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ABSTRACT

Recent theories have related the propagation and diffusion of

cosmic rays to the power spectrum of the interplanetary magnetic field.

In this study, we directly test the power spectrum-diffusion coefficient

relation at low energies (< 100 MeV) where the validity of the theories

has been in doubt.

A first order perturbation solution of the Fokker-Planck equation

governing the diffusion, convection and adiabatic deceleration of galactic

cosmic rays in the solar medium is found to relate intensity fluctuations

of low energy cosmic rays to local changes in the propagation parameters.

Diffusion coefficients and their day to day variations are calculated

from interplanetary magnetic field data obtained by Pioneer VI in 1965/

1966. These are compared to simultaneous observations by IMP III of the

proton flux in three energy channels (20-40, 40-60, 60-80 MeV).

Fluctuations in the higher energy proton flux (40-60, 60-80 MeV)

are found to be related to changes in the modulation parameters as pre-

dicted by theory, if the contributions to the diffusion coefficients from

directional discontinuities in the interplanetary magnetic field are

subtracted. This is interpreted to imply that the discontinuities are

basically tangential, and do not contribute significantly to the scattering

of low energy cosmic rays. A lack of correlation between low energy

(20-40 MeV) flux and parameter changes is interpreted as due to either a

breakdown of the theory at low energies or to the presence of a continuous

flux of high energy solar protons.

Observations of time profiles of solar flare events together with

measurements of the low energy intensity spectrum of galactic cosmic ray



protons are found to imply a limit on the magnitude and average radial

behavior of the diffusion coefficient near the orbit of earth. As

Pioneer VI went from 1 to .8 AU in heliocentric radius calculations of

the parallel diffusion coefficient indicate a magnitude and a negative

radial gradient consistent with the implications of the particle measure-

ments. A mechanism is found to explain the radial variation in terms

of the diffusion coefficient's dependence on the magnetic field power

spectrum.

Because of the correspondence in therelative changes of particle

intensities and propagation parameters, and the correspondence in the

predictions and observations of the magnitude and radial variation of

the diffusion coefficients, it is concluded that the diffusion coefficient -

power spectrum relation is valid to proton energies as low as 50 MeV.
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CHAPTER I

1.1 INTRODUCTION

Cosmic rays have been observed at earth for the last 40 years and,

during that period, much of the efforts to understand the interplanetary

medium have been to explain their origin and temporal fluctuations. It

was Forbush (1938) who first noted that following large solar flares the

cosmic ray intensity at earth would drop suddenly. It was also Forbush

(1954) who noted an anti-correlation of cosmic ray intensity with the

11-year solar activity cycle. This led to the interpretation that there

was a component of the cosmic rays of galactic origin which was being

modulated by the interplanetary medium.

In 1956, Morrison (1956) pointed out that if the sun continuously

emitted turbulent clouds of magnetized plasma, the charged cosmic rays

traveling through the clouds might be scattered by the magnetic irregulari-

ties in a random fashion. The cosmic rays would then execute a random

walk, and their transport might be described by a diffusion equation.

Such an equation might than be used to explain a variety of temporal

changes in the cosmic ray. intensity.

Observations of comet tails by Biermann (1951, 1957) led to the

suggestion of a continuous solar wind. This, in turn led to the explana-

tion by Parker (1956, 1958a) of the 11-year solar cycle variation in

terms of diffusion and convection. This model has been the basis for our

understanding of the modulation of cosmic rays, and direct satellite

observations of the solar wind and interplanetary magnetic field for the

past ten years have confirmed its foundation.
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With the observations of the interplanetary magnetic field have come

attempts to derive the diffusion coefficients for the propagation of the

cosmic rays. Work by Jokipii (1966) and Roelof (1966) and later by others

has established a relationship between the spatial power spectrum of

magnetic field fluctuations and the diffusion tensor. This has been

tested by Gloeckler and Jokipii (1966) and Jokipii (1968a) by comparing

the rigidity dependence of the diffusion coefficients as predicted from

the power spectra to the rigidity dependence of the 11-year solar cycle

modulation of cosmic ray protons and helium nuclei. These studies utilized

magnetic field power spectra obtained over long periods, and applied them

to the simple diffusion-convection theory. The results were consistent

with theory at high energies (>500 MeV/nucleon) where the diffusion-

convection model holds. However, this method has produced no conclusive

results at low energies, where the appropriate power spectra have been

shown to vary on a day to day basis (Coleman, 1966; Siscoe et al., 1968;

Sari and Ness, 1969) and where the simple diffusion-convection model must

be modified by the effects of adiabatic deceleration (Parker, 1965).

Recently, Klimas and Sandri (1971) have suggested that at low

rigidities, (<1 GV), corresponding to proton energies less than 500 MeV,

diffusion coefficients may not even be definable. This is due to a break-

down of the adiabatic approximation in computing the transport coefficients

when the particles gyroradius approaches the magnetic field's autocorrela-

tion length. More recently, Jokipii (1972) has rederived the diffusion

coefficients showing that the adiabatic approximation is not strictly

required. He finds that diffusion coefficients may be defined by the

magnetic field power spectra for proton energies of 20-50 MeV and, perhaps,

even lower. This controversy has not yet been resolved.
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A further difficulty in the description of the diffusion of low

energy cosmic rays was suggested in two studies by Sari and Ness (1969,

1970). There it was found that, at times, directional discontinuities

in the interplanetary magnetic field may be the dominant contribution to

the shape and level of the power spectra. If the directional discontin-

uities were basically tangential (parallel to the magnetic field lines)

as suggested by Burlaga (1971), low rigidity particles ('300 MV), whose

gyroradii are much less than the average distance between discontinuities,

might rarely encounter discontinuities. These particles may then be

scattered only by the fluctuations between discontinuities. Thus, the

power spectra as measured by the spacecraft and applied to the determina-

tion of the diffusion tensor may not be the same spectrum of irregularities

observed by the low rigidity cosmic rays.

It is the purpose of this work to provide a direct test of the effects

of the predicted diffusion coefficients on the propagation of low energy

cosmic rays. We will also test the relative contributions of the dis-

continuities and the turbulent fluctuations between discontinuities in the

diffusion of the low energy cosmic rays. This will be done by comparing

fluctuations in the intensity of low energy cosmic ray protons to changes

in the propagation parameters calculated from the complete magnetic field,

only the portion made up of the discontinuities, and the fluctuations

between discontinuities.

The remainder of this chapter will cover the foundation of cosmic

ray modulation theory and the relation of the diffusion tensor to the

power spectrum of the interplanetary magnetic field. The successes and

limitations of previous studies relating power spectra to high energy

cosmic ray modulation will also be reviewed. Finally, we will explain

the basis on which this present study is founded.
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In the second chapter we will discuss the data and the techniques

for data analysis employed. This will cover the methods of determining

discontinuities and the calculation of the power spectra for the three

data sets: the "real" data, the discontinuities, and the fluctuations

between discontinuities. The relation of the results to magnetic field

macrostructures such as "sectors" and to solar radio noise observations

will also be discussed.

In the final chapter we will relate our calculations of the appropri-

ate modulation parameters, as derived from Pioneer 6 satellite data, to

simultaneous day to day measurements of low energy galactic cosmic ray

proton fluxes as measured by the IMP III satellite. Fluctuations in the

modulation parameters and corresponding fluctuations in the proton fluxes

will be shown to be consistent with theoretical derivations presented in

Chapter 1 and indicate that the scattering is primarily due to the magnetic

irregularities between discontinuities. Temporal delays between changes

in the modulation parameters and changes in the particle flux are observed

and can be related to recent theoretical considerations of the macroscopic

spatial trajectories of the average particle population.

The results indicate the possible existence of a local radial gradient

in the parallel diffusion coefficients. The measurements of both the mag-

nitude and gradient of the diffusion coefficient are found to give a

consistent picture to observations of the galactic proton spectra and

the behavior of energetic solar flare protons. Mechanisms which might

lead to such a gradient are also discussed. Finally, we will suggest

work for future studies.



L2 Basic Elements of Cosmic Ray Modulation

Observations by Bridge et al. (1961) were the first to establish that

the solar wind was an ionized, supersonic plasma with average velocity from

300 to 400 km/sec. Imbedded in this plasma is the interplanetary magnetic

field. Since the plasma is highly conductive, the field is essentially

"frozen" into the wind and convected radially outward from the sun eventu-

ally merging with the interstellar medium. It is within this "solar cavity"

that the modulation effects on the galactic cosmic rays are expected. We

will briefly sketch Parker's (1956, 1958a) explanation of the 11-year solar

cycle modulation in terms of diffusion and convection.

We start with the assumption of an isotropic, constant galactic density

of cosmic rays outside the solar cavity. In a spherically symmetric regime

of magnetic scattering centers there would be an inward diffusive flux of

galactic particles into the solar cavity given by

Fdiff K V U (1.2.1)

where K is the diffusion coefficient and U is the particle density. Since

the scattering centers are imbedded in the solar wind, which is moving

radially outward with velocity Vw, there is a contribution to the flux

due to convection:

F = V U (1.2.2)
conv w

The equation of continuity then gives

at + V (VwU - K V U) = (1.2.3)

In the steady state, with no sources, and assuming spherical symmetry,

we get:

K = VwU (1.2.4)

5
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which can be integrated to give

rc

U(r,T) = U.(T) exp[-f Vw/K dr] (1.2.5)

r

where r is the effective radius of the solar cavity.

Here, K is assumed to be isotropic but dependent on particle kinetic

energy, T, and charge, Z. All the independent parameters, the radius of

the solar wind boundary, rc, the solar wind Vw , and K, are considered to

vary in the solar cycle. Thus, the particle density can be expressed as

U(r,T) = U (T) exp[-f(T,Z,t,r,r )] (1.2.6)
C

This relatively simple diffusion-convection picture has, in large part,

explained the general features of cosmic ray transport in the interplanetary

medium and the 11-year solar cycle variation. Subsequent theoretical de-

velopments and experimental observations have, however, caused modifications

of this model.

The prediction of the general spiral nature of the interplanetary

magnetic field by Parker (1958b) and its subsequent observation by Ness

et al. (1964) showed that the magnetic field had some average direction.

This, in turn, implied that the diffusion was anisotropic. Thus, the dif-

fusion coefficient in (1.2.1) is given by a tensor rather than a scalar.

Further, the fact that the solar wind is diverging radially leads to

an adiabatic cooling of the cosmic rays in the steady state. Energy loss

was first discussed by Singer et al. (1962) and fully developed by Parker

(1965) who showed that the particle should lose momentun at a rate

_1dp = 1 V (1.2.7)
p dt 3 w

or kinetic energy at a rate

1 dT _ c(T) .2
T dt 3 V Vw (1.2.8)Twhere a(dt 3 w

where ct(T) = (T + 2T )/(T + T ), and T is the rest energy.
0 o o
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The steady. energy loss requires the addition of a term 3./3T(U ST/3t)

to the diffusion, or Fokker-Planck equation (1.2.3). In general, this is

only valid in a frame of reference moving with the wind. However, Jokipii

and Parker (1967) showed that to first order in V /v, with v the particle

velocity, this was also valid in a fixed frame. The full Fokker-Planck

equation, describing the anisotropic transport of the cosmic rays is then

au = -· *(v U) + (K a )

(1.2.9)

+ e ( TU)

(This equation was also derived by Gleeson and Axford (1967) starting

with a Bolzmann equation including collisions.)

' Although the full Fokker-Planck equation can be separated,, for

example, into equations for the.number density and radial current density,.;

a technique which facilitates the discussion of high .energy, approximations

and anisctropies,.equation. (1.2.9) is the general equation governing the

transport,.of cosmic rays in the solar cavity and is appropriate ,for ,cosmic

rays of both galactic and solar origin. In the next section we will. dis-

cuss the developments leading to the determination of the appropriate

diffusion tensor, Kij, for the Fokker-Planck equation.

1.3 Relation of the Diffusion Tensor to the ' '

Power Spec'trum of 'the Inriep'lanetary Magnetic Field 

An early attempt to obtain transport doefficients'"in terms of

magnetic field irregularities was made by Parker (1963). Here,'the field

was viewed as an array of isotropicaliy distributed scattering centers,

where each center' iad:'a scale
~'size, Q , thedistance over which the field

was correlated with itself. A charged particle"with gyroradius rg should
g
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suffer a deflection on the order of k/rg at each scattering center. After

m random deflections, the angle through which the particle is scattered

is roughly m 2(Z/rg). If a mean free path is defined as the distance re-

quired for a scattering through an angle of one radian, then a particle

traverses one mean free path after passing through n scatterers, where

n%(rg/2)2. Thus, the mean free path should be proportional to the square

of the particle's gyroradius, or the square of the particle's rigidity.

If, on the other hand, the gyroradius is such that rg<k,then each

deflection might cause a large scattering, and the mean free path, A, is

the correlation length. Thus, if the diffusion coefficient is given the

classical definition of

K = cSX (1.3.1)
3

where 8 = v/c, the two limits imply different rigidity dependence of the

diffusion. In the small gyroradius limit, the diffusion coefficient is

proportional to velocity, while for large gyroradii the coefficient is

proportional to velocity times the square of the rigidity. Although this

approach is somewhat elementary, it is interesting to note that later,

more rigorous, statistical analysis has produced similar results in these

two limits.

Recently a number of authors have derived diffusion coefficients from

a more general treatment of the effects of magnetic fluctuations on the

orbits of fast charged particles. (Here "fast" is defined from Jokipii

(1966) where the ratio of electric to magnetic forces on the particles

in the interplanetary field is Fe/FB ' VAlfven/BC << 1). These include

Jokipii (1966, 1968b, 1971), Roelof (1966), Hasselmann and Wibberenz

(1968), and Kulsrud and Pearce (1969). All procede from a Fokker-Planck
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equation to describe the diffusion in pitch angle and position. (Roelof

(1967) also showed that the Fokker-Planck formalism was derivable from

the more generally applicable Liouville's equation). All obtain essen-

tially similar, if not almost identical, results. Although the treatment

of Hasselmann and Wibberenz (1968) is the most general of the four, and

deals with the greatest number of models for the magnetic field, it is

also the most intractable to apply observationally. Depending on the

model, it requires knowledge of parameters such as wave polarization

which are not unambiguously determinable by single spacecraft measurements

in the solar wind. This treatment also uses the approximation for the

probability density for the particle position and pitch angle of Jokipii

(1966) to derive the diffusion coefficient for propagation along the

average field, Kl . In order to avoid difficulties when the particle

pitch angle approaches 90° , Jokipii (1968b) revised his derivation to

expand the probability density in terms of Legendre polynomials, which

must be assumed to be small after the first order polynomial. For

discussion of this point see Jokipii (1971).

In this study, we will employ the approach of Jokipii (1968b and

1971). Considering the similarity of results when identical magnetic

field models are used, the fact that the models themselves are ideali-

zations of rather disordered field configurations, and the inherent

errors in measurements, we do not believe that our results can show a

definitive bias toward a particular derivation. Since all the derivations

depend relatively the same on the magnetic field power spectrum, solar

wind velocity, particle rigidity, etc., changes in these parameters

should affect the particle densities in approximately the same manner.

For most observed magnetic field power spectra, differences among the
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various derivations are within a factor of two in the magnitude of the

diffusion coefficients. Likewise, the difference in the results obtained

from the most physically reasonable models are also less than a factor

of two, (c.f. Figure 6 of Hasselmann and Wibberenz (1968)). Future

studies which we shall suggest may be able to differentiate between the

various derivations. We shall only derive the diffusion coefficients

from what we consider to be the most satisfactory statistical theory

and probable magnetic field model.

We will briefly sketch the important points of Jokipii's (1971)

derivations. This contains some of the more plausible assumptions and

produces the most generally applicable results. Since the effects

eventually depend on the magnetic field power spectra, we will first

develop the formalism relating the spectra to the observations.

Consider a fluctuating magnetic field i, which has an average value

B which we choose to be in the Z direction of our cartesian coordinate

system. The fluctuating part can then be defined as

Bl(r,t) = B(r,t) - B (1.3.2)

Since the Alfven velocity for propagation is approximately an order

of magnitude smaller than the average solar wind velocity, Vw, we shall

assume that inhomogeneities in the magnetic field as seen by a spacecraft

represent principally convected spatial irregularities rather than explicit

temporal variations. It should be noted that although the results will

be discussed in terms of frequency spectrum, what is truly measured is a

one-dimensional wave number spectrum along the solar wind velocity. The

interchangeability with frequency spectrum is correct to first order in

VA/VA w
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We can then define the fluctuating part of the magnetic field in the

frame of the solar wind to be

Bl(r,t) B1(r - w(t-to ), to) 1.3.3)

The three dimensional autocorrelation tensor of the field fluctuations

is then

R. (=O, T) < B r t), B( t) > (1.3.4)

where

R. (=,T) = R. .(= -V -T,o) (1.3.5)
Ri =,= Rj w( 

We also define the observed power spectrum of field fluctuations as

is conventional:

co

P.. f I< l(t) B 4- -2' rifT (1.3.6)

or

Pij(f) =f Rij(O,T) -2ri dT (1.3.7)

Then if 53 is radial along the wind direction, the simple transformation

of 3 = V T gives3 w

Pij(f) =1 Rij (0,0,3,0) g2. if 3/Vw d (1.3.8)
ij V.' d 3. 3

w --

Thus, the observed power spectra is related to the correlation tensor as

measured along the solar wind velocity.

It should be pointed out that these considerations have assumed that

the wavelengths of fluctuations inferred from spacecraft measurements are

the same as seen in the frame of the wind. This is generally true only if
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the wave number of the fluctuations, k, is along the solar wind direction,

(k · 'w) = |Ik|1wl.' Since we are reviewing Jokipii's derivation, we will

not make the necessary modifications to either the power spectra or dif-

fusion coefficients until later. The interested reader is referred to

section 2.5 for further discussion.

Now, let there be a charged particle of gyrofrequency w0 in the

average field, w = Ze B/ymc, where Ze, ym, c are the standard notations

for charge, relativistic mass and speed of light. Let p = v /v be the

particle's pitch angle, and R = ymBc2 /Ze be the particle's rigidity, where

B = v/c. If the orbit changes of the particle caused by the fluctuating

magnetic field are small in a correlation length of the fluctuations, the

evolution of the particle's distribution in position and pitch angle

can be governed by a Fokker-Planck equation.

In order to facilitate computation, it is assumed that the fluctuations

are axially symmetric about the Z axis. This is probably a good approxima-

tion. Sari and Ness (1970) found that in a coordinate system aligned with

the field, the power in the fluctuations in two coordinates normal to the

average field tended to be equal and approximately two times the power in

the fluctuations along the field. Somewhat similar results were obtained

by Belcher and Davis (1971) who observed power anisotropies of 5:4:1 for

two coordinates normal and one along the field.

Finally, Jokipii (1971) considers two magnetic field models: one

where the fluctuations depend only on the Z direction, and one in which

the fluctuations are isotropic. The first implies that the correlation

tensor is diagonal in a field aligned frame or that cross-correlations

between components are zero. This leads to the simplest results with no

conditions on the magnetic field power spectrum slope. However, this is
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a limiting case and has never been observed. The second model, the

isotropic field, is also idealistic. The results of Sari and Ness (1969)

indicated that the field was not isotropic, although this was only for

limited times and only within the confidence limits of the observed power

spectra. The true case is probably intermediate, and, as mentioned above,

the results should be similar within a factor of two.

For the diagonal correlation tensor the Fokker-Planck coefficients

for scattering in pitch angle and position are derived to be

(1.3.9)
<At2> 1p2 Z m 2 - oo

<Ax 2 > = <Ay2 > - 1 f 22 v 22 R () + (1.3.10)
At At 2m0 2 1pjv f [ y2 m2c2 xx

(1_p2)v2 (g 2-2 vi2O/V] d

From (1.3.7) we see that the scattering in pitch angle occurs at a

resonant wave number, k = 0w /iv = l/prg which corresponds to the

gyroradius of the particle in the fluctuating field. The scattering

across the field line depends both on resonant scattering and on the power

at zero wave number, P xx(k=O), corresponding to the random walk of field

lines across the Z axis.

These can be related to the diffusion coefficients for propagation

parallel and perpendicular to the mean field according to the formulation

of Jokipii (1968b):

-1

K 2 v2 f <(Ap)2> d1 (1.3.11)

0

= 2 <(Ax)2> d (1.3.12)
K 2 = 2 At

0
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We would like to compare these results to the power spectra of the

magnetic field as viewed by a spacecraft stationary in the solar wind.

From (1.3.8) we note that the correlation tensors in the expressions for

the scattering coefficients can be identified with Vw P (f) when

f = V c /2rnpv, or, in terms of the particle rigidity, f = Vw B/27TPR.
w o

If the power spectrum is also smoothly varying with frequency, P x(f) = Af- a,

simple integration gives the following results for the diffusion coefficients

in terms of rigidity and the observed power spectra,

K
11

(R) = 2a(c+2) cBR2 /9VWPx
x

(f = V B/2rR) (1.3.13)

1 v
KI(R)= -- V P (f=O) +

8 B2 w xx

1 vV P(1.3.14)

4 a(2+a) E2 P zz(f = VwB/2R)

Since the spectra is usually calculated for only positive frequencies,

with the normalization that the variance or total power, R xx(O) = TP (f) df,
xx 0 xx

we have replaced the power spectra in the above formulae by P (f) => P x(f)/2.

With Pioneer 6 measurements in 1966, spectra given by Sari and Ness

(1970) indicate that the parallel diffusion coefficient for a 70 MeV proton,

(R = .37 BV, 8 = .36, B = 6y, Vw = 4 x 107 cm/sec), has an average value of

K11 (70 MeV)- %2 x 1021 cm2 /sec. For perpendicular diffusion, and a power

spectra that falls off at high frequencies, the first term in (1.3.14)

dominates, and from Figure 3 of Sari and Ness (1970) we find a typical

value for perpendicular diffusion to be, K 1 (70 MeV) ~ 1.5 x 1020 cm2 /sec.

It is interesting to note the dominance of the field line random

walk in (1.3.14). If that term were not present, then within a factor of

two, (assuming P (f) = Pxx(f)), the expression for the diffusion across
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field lines would be the same as given by Axford (1965), K
i
= KIi/(l + .o2 '~ 2),

where Tll is the collision time for scattering, T = 3KII /v2. If there

were no field line "random walk", the coefficient for perpendicular dif-

fusion would be smaller by more than an order of magnitude.

It should also be noted that if the 70 MeV protons are not scat-

tered by the tangential discontinuities, the power spectrum used in

(1.3.13) is perhaps too high and Kii should be larger. Likewise if

the particles do not "see" the discontinuities, their contributions

to the low frequency power spectrum, (which may be considerable),

may cause Kl to be overestimated. This should be remembered when

we employ "order of magnitude" calculations in the following sections.

Finally, Jokipii (1971) also calculates the scattering coefficients

for the isotropic field model. In the limit that the particle gyro-

radius is much less than the field autocorrelation length, rg << ,

and if the magnetic field power spectrum does not fall off steeper

than f-2, the results are approximately equivalent to (1.3.9) and

(1.3.10). Power spectra which we obtain do not generally fall off

faster than f-2. Therefore, in this study we will employ (1.3.13)

and (1.3.14) as reasonable approximations to the diffusion coefficients

as predicted from statistical theory.

1.4 Past Tests of Theory

In the previous two sections we have traced the developments of

equations describing the behavior of cosmic rays in the interplanetary

medium and the relation of their propagation parameters to a statistical

description of the interplanetary magnetic field. Because of the dif-

ficulty in obtaining analytic solutions to the full Fokker-Planck equation

(1.2.9) in all except the most idealized cases, approximations appropriate
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for limited energy ranges have been utilized to test the relation between

power spectra and modulation.

The simplest approximation is that of diffusion-convection. This

ignores the energy loss process on the cosmic ray spectrum and, there-

fore, is applicable only at high energies, T , 500 MeV/nucleon, where

the effects of adiabatic deceleration are negligible, (Goldstein, et al.

(1970)). The steady state solution for the cosmic ray density at some

time, t is given by (1.2.5), or

U(r,T,t ) = U(T) exp [-cVw(r',t)/K i (r',T,t)drj (1.4..1)

r

If the diffusion coefficent is separable in energy, (rigidity), and

radius,

Kll (r,T,t) = BKl(r,t) K2(R,t) (1.4.2)

we can express the particle density as

U(r,T,t) = U (T) exp[-n(t)/BK
2
(P,t)] (1.4.3)

where the spatial dependence of the modulation, solar wind velocity, and

cavity boundary are included in the parameter n(t).

From equation (1.3.13) it is clear that if the transverse'power

spectrum of the interplanetary field has the variation, P(f) = Af- a(t),

the rigidity dependent diffusion coefficient has the form,

K2 (R,t) a R2-a(t) (1.4.4)

If the cosmic ray intensity is then measured at two widely separated

times, the fractional modulation, or the logarithm of the ratio of

densities observed at times t2 and tl, will be given by
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in U(r,Tt2)/U(r,T , tl) = -n(t2) ) + c(t )/SR2-(tl) (1.4.5)

If, fortuitously, the power spectral slope is the same at tl and t2,

then

in U(r,T,t2)/U(r,T,tl) =[n(tl) - n(t 2)YSR2-a (1.4.6)

Thus, we should be able to compare the rigidity dependence of the frac-

tional modulation with the observed magnetic field power spectrum.

Calculations by Gloeckler and Jokipii (1966) and Jokipii (1968a)

on observations of proton and helium nuclei between 1962 and 1965 indicate

that the fractional modulation at high rigidities, R > 2 BV, varies as

1/MR, in agreement with measurements of the magnetic field power spectra

at those times (Coleman, 1966). However, at lower rigidities the frac-

tional modulation indicated rigidity independent diffusion or modulation

proportional to 1/8, in disagreement with power spectra observations.

Power spectra obtained for interplanetary conditions in 1965 by

Siscoe et al. (1968) and in 1966 by Sari and Ness (1969, 1970) indicated

a frequency dependence of close to f-2 at high frequencies, (f > 2.8 x 10-4Hz),

corresponding to rigidities R A .5 BV, and a dependence of f-3/2 to f-5 / 3

at lower frequencies, corresponding to higher rigidities. These results

were in agreement with the fractional modulation between 1965/1966 as

measured by Ormes and Webber (1968). They found a fractional modulation

proportional to 1/8 below .5 BV and proportional to 1/SR2 at greater

rigidities. Assuming that the shape of the power spectrum is invariant

in the intervals over which the cosmic ray data were obtained, these

results are in agreement with the observed power spectra.
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However, some caution must be used in interpreting the results at low

rigidities. First, rigidities below .5 BV, or approximately 150 MeV/nulceon

are well below the range in which diffusion-convection is applicable.

Secondly, observations of Webber (1967) and Lezniak and Webber (1971) have

shown a splitting in the fractional modulation between protons and helium

nuclei at low rigidities, with a greater modulation for protons than helium.

This cannot be accounted for by simple diffusion-convection, since in this

picture the predictions are purely rigidity dependent. Thus, the results of

Siscoe et al. (1968) and Sari and Ness (1969, 1970), although attractive,

cannot be considered as testing the validity of the diffusion coefficient-

power spectrum relation at low energies.

One may instead use the quasi-static form of the full Fokker-Planck

equation (1.2.9) and various diffusion coefficients in order to numerically

fit the observed cosmic ray spectrum. However, with this, one is required

to specify not only the rigidity dependence of the diffusion coefficient,

but its radial dependence as well, and the unmodulated cosmic ray spectrum.

A numerical solution has been made by Fisk (1971) to fit the proton and

helium intensities observed near solar minimum in 1965. The unmodulated

spectrum was assumed to be U (T) a T -2.6 5 and the diffusion coefficient

to have the separable form K11 = Ke $R exp(r/re), where re = 1 AU and

Ke = 7.5 x 1020 cm2 sec- 1 BV - 1. The results for protons are shown in Figure 1.

The numerical solution is obviously a good fit to the cosmic ray intensity

spectrum, and the rigidity dependence of the diffusion coefficient is in

reasonable agreement with the shape of magnetic field power spectra (at

frequencies below 10 - 4 Hz). However, the magnitude of the diffusion coeffi-

cient at the orbit of earth in this model is generally smaller than that

derived from Jokipii's formula and related to observed magnetic field power
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spectra. For example, for protons of T = 70 MeV, the given diffusion

coefficient has the value of K e X 1020 cm2 /sec. This is more than an

order of magnitude smaller than the value we derived in Section 1.3 from

Pioneer 6 data in 1965/1966. Moreover, as will be discussed below, such

small values are clearly inconsistent with the fast rise times to maximum

of energetic solar flare particles.

It should be noted that the magnitude of the diffusion coefficient

necessary to fit the cosmic ray spectrum, particularly the positive slope

at low energies, is closely wedded to the choice of radial dependence and

boundary conditions. (This will also be discussed below.) Thus, although

Fisk's results are in disagreement with the observed magnitude of the dif-

fusion coefficients, they do not rule out other values of Kii with different

radial variation, and a rigidity dependence still corresponding to magnetic

field observations.

Numerical solutions of the full Fokker-Planck equation have also been

shown by Lezniak and Webber (1971) to account for the splitting in the

modulation of protons and helium nuclei for the years 1965 and 1968. They

employed a diffusion coefficient increasing exponentially with radius and a

magnitude approximately equal that of Fisk (1971). However, they assumed an

unmodulated spectrum varying as total energy tothe -2.5 rather than kinetic,

and a rigidity dependence in diffusion as predicted by the results of Sari

and Ness (1969). Their results, likewise, depended on the various parameters

and boundary conditions which were specified.

Although the above results indicate that the observations at low energies

can be accounted for with the full Fokker-Planck equation, they do not con-

clusively test the validity of the power spectrum-diffusion coefficient rela-

tion. It should be noted that any test at low energies must include the process
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of energy loss. It should also be noted that direct fits to the cosmic ray

spectrum cannot test the relation unless one knows both the unmodulated

spectrum and the variation of diffusion coefficient with radius. In order

to test the relation we would like to develop a method which contains the

adiabatic deceleration process yet depends on only local observations.

1.5 Perturbation Solutions to the Transport Equation

We wish to develop a formalism to relate changes in the observed

modulation parameters,Vw/K, to variations of the particle densities at low

energies. From the considerations of the past section, we would prefer a

dependence solely on local, or single spacecraft observations. We should

also bear in mind the result of Sari and Ness (1970) that the effects of

the magnetic discontinuities on the power spectra vary over a twelve hour

to one day period, and if we wish to determine their contribution to the

scattering we should apply our observations over as short a time period

as possible (i.e., daily). Thus power spectra which are obtained over long

periods and usually applied to diffusion-convection solutions are inappro-

priate.

We propose a model which depends on day to day fluctuations or per-

turbations in the galactic cosmic ray intensity, rather than on the magnitude

of that intensity. Clearly, a measurement of the interplanetary magnetic

field power spectrum and solar wind velocity for a short period can only be

considered as representative of local conditions. The average particle

intensity, on the other hand, depends on conditions averaged over the entire

solar cavity, conditions which change macroscopically on a time scale of the

solar cycle, 11 years. However, if we measure changes in the appropriate

modulation parameters over short periods, we might expect corresponding

perturbations in the particle density superimposed on some average value.
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Unlike fits to the particle spectrum, we will then be concerned with changes

in the modulation parameters and particle intensity, rather than their

particular magnitudes.

If we assume that a single spacecraft can, in some period, measure

representative interplanetary conditions over some volume, we should expect

that changes in those conditions would most clearly affect those cosmic rays

which, within the same period, sample approximately the same volume. This

implies that the subsequent analysis will only be valid for low energy par-

ticles. High energy particles will simply traverse too large a distance

in our measuring period. Whatever perturbations they suffer will represent

conditions over a much larger volume.

Let us expand these ideas quantitatively. We will show later that

power spectra taken over one day provide good statistics. Likewise, we

will relate these measurements to daily averaged proton fluxes of a char-

acteristic energy of 70 MeV. Therefore, the following calculations will be

considered to be over one day periods appropriate to approximately 70 MeV

protons.

Assume that the average magnetic field at 1 AU is along the spiral

direction predicted by Parker (1963). Cosmic ray protons arriving at a

spacecraft located at 1 AU during a one day period will have traversed, on

the average, an ellipsoid in space (Figure 2) whose major axis is centered

at the earth along the spiral direction and whose minor axis, dl , is

determined by the perpendicular diffusion coefficient, K I and the time

interval, t,

d K (Klt)1
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For a 70 MeV proton, a typical value for the perpendicular diffusion

coefficient as derived in Section 1.3 is Kl R 1020 cm2/sec. During a one

day period, t X 8.6 x 104 sec, the protons we observe have typically sampled

conditions normal to the average field of width, dl Xu 3 x 1012 cm.

Let us assume that the point measurements of the magnetic field by the

spacecraft are representative of conditions along the field lines in the

ecliptic plane, and at least somewhat representative of conditions normal

to the ecliptic. During that same period of one day, the solar wind trans-

ports the "frozen-in" field past the spacecraft. We should measure conditions

perpendicular to the average field of length

kI X V t sinp

For p X 450, and an average solar wind speed of 4 x 107 cm/sec, this implies

Z1 X 2.5 x 1012 cm. Thus, Ql X dl, and with the assumption that interplanetary

conditions are somewhat isotropic, the field sampled by a single spacecraft

in one day should be representative of the same field seen by protons arriving

at the spacecraft with energies equal to or less than 70 MeV. Then, if the

theory relating the parameters to magnetic field and solar wind conditions

is correct, day to day changes in the particle intensities should be related

to the appropriate changes in the calculated modulation parameters.

It should be noted that the above consideration ignored the adiabatic

energy loss of the particles during the measurement period. However, a

calculation of the energy loss using equation (1.2.8) with a(T) = 2,

appropriate for non-relativisitc particles, indicates that the particles

we observe at 70 MeV during one day have lost no more than 25 MeV. Any

revision due to energy loss is minor and will not affect these conclusions.
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We would now like to estimate how the low energy cosmic rays will

respond to local perturbations in interplanetary conditions. If we

ignore energy loss in the Fokker-Planck equation, (diffusion-convection

picture), we note from equation 1.4.1 that changes in the modulation

parameter, V w/KI , should be anti-correlated with changes in the particle

intensity. This should be a general characteristic of the results, re-

gardless of formalism.

Both Jokipii (1969) and Gleeson and Axford (1968) have obtained

perturbation solutions for the cosmic ray density from the quasi-static,

spherically symmetric Fokker-Planck equation. Although proceeding in

slightly different fashions, they achieve the same results, and both

require that V W/Kii << 1, where R is a characteristic heliocentric

distance, typically 1 AU. If AU(r,T,t) is the change in the particle

density resulting from the perturbation in Vw/KI , they find that

U(r,T,t) = -[1 3U T a] /tCV (r',t)/K,(r,T,t) dr (1.5.2)

where 1 - 1/3U a/aT(aTU) can be considered to be the Compton-Getting

factor of the locally observed spectrum. If the differential intensity,

j = vU/4r, has a variation in kinetic energy -j(T) = ATY,:we can express the

Compton-Getting factor to be a-ayY3. Thus,

AU(r,T2t) A - V (r',t)/Kl (r',T,t)dr (1.5.3)
U(r,T,t) (w
For general interplanetary conditions V R/K11 << 1 only for protons

whose energies are greater than 400 MeV, and these results may not be

applicable to our considerations. These also require knowledge of V /K

from the point of observation to boundary of the solar cavity, or measurements

of interplanetary conditions over long times, which is of no aid to us.
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Finally, Rygg and Earl's (1971) conclusion that over a solar cycle

the proton intensity spectrum from 50-200 MeV has the shape j = AT, or

y = 1, implies that at low energies (a(T) = 2) the Compton-Getting factor

is zero. Thus, AU/U would be zero regardless of the change in the mod-

ulation parameter, V /Kil. This is in conflict to what we observe.

Therefore, we would like to develop a perturbation solution to the

transport equation to determine the response of the particle density as a

function of changes in V /K appropriate for low energies where V R/K " 1W W

and the Compton-Getting factor is zero.

Let us start with the full Fokker-Planck equation (1.2.9) for which

we assume conditions to be spherically symmetric,

a_ _(U(r1 1 w 1 1 a a
au = (r2v U) + D (r2K r + -- r - (rTU) (1.5.4)

at r2 W 2 ~r rr Dr 3 Dr w DT

where K = K cos24 + K
1
sin2* % K1 l cos2 *, (Jokipii, 1971), and K is

rr iI i11 rr

defined along the radius vector, while Kll is measured in a system

aligned along the average magnetic field. Since we shall be dealing with

low energies we let a % 2, a constant; and for visual convenience we let

V => V, K => K.
w rr

The considerations of Parker (1963) indicate that following coronal

expansion the solar wind velocity is approximately constant. Thus, we let

2V/Dr 2 0. This is equivalent to saying 2V/r >> DV/2r in the Fokker-

Planck equation. Our measurements of changes in the solar wind velocity

over one day are, on the average, less than 40 km/sec. Thus,

DV/Ir " AV/VAt % 10- 6 sec-1 , while at r = 1 AU, 2V/r % 5 x 10- 6 sec- 1.

Then 2V/r/3V/3r ;, 5, and our assumption cannot be very bad.
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The Fokker-Planck equation can then be written as,

au D a K 2K ) DU 2V 2 (1.5.5)
-K -2+ -- (U (TU)

t r2 (r Dr r 3 aT (

We would like to determine under what conditions the time derivative

in (1.5.5) can be ignored. Let us assume that we perturb the medium by

varying V/K. Let us also assume that in response the particle density

changes as

U(r,T,t) = U (r,T) [1 + p (r,T,t)] (1.5.6)

where U (r,T) is the unperturbed value and u(r,T,t) is the perturbation.

By multiplying (1.5.5) by r2 /KU we see that the density, U, will be

responding to parameters, Vr/K, which are of order unity. We expect that

we can ignore explicit time dependence when r2 /KU aU/It << 1. By (1.5.6),

1/U 3U/at 'AU/UAt v p/At, and we will satisfy the requirement if we

sample over times At >> r 2/K)Ap. From observations, U changes on the

average less than 30% per day. If at the same time we assume that we

perturb a volume whose characterisitic radius is somewhat less than 1 AU,

we find that

2x1026
At >> (.3) sec X .3 day

2x1021

This implies that if we instantaneously perturb the interplanetary medium

over 1 AU, the low energy particle densities, (with K X 2 x 1021 cm2 /sec),

will not have relaxed to equilibrium values until after times greater

than .3 days. Thus, by averaging our results over 3 days we should

satisfy this requirement by an order of magnitude, and we can ignore

explicit time dependence. We then write the Fokker-Planck equation

in the convenient form:
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__U + A +)2 _ V (U 21.5.7)
ar2 K Dr r K ar K (U (1.5.7)

O'Gallagher and Simpson (1967) first pointed out that their results

relating the cosmic ray radial gradient to the variation of the diffusion

coefficients as given by Gloeckler and Jokipii (1966) implied that K is

separable into functions of R and B and a function of space and time.

Since this greatly simplifies the computation, we make the same assumption

here:1

K(r,T,t) = BKl(r,t) K2(T,t) (1.5.8)

which implies that

K+ 2 = f(r) in (1.5.7).
Kr r

We wish to perturb the modulation parameter, V/K, and obtain a

solution to first order in the perturbation. For simplicity, let us

assume that only the energy dependence of the modulation parameter is

perturbed; or let

V
V (r,T,t) = K (r,T) (l+p(T,t)) (1.5.9)
K K

A number of authors, Burger and Tanaka (1970), and Burger (1971),
have questioned the validity of this assumption. However, they base
their objections to results predicted from the simple diffusion-
convection model. Gleeson and Urch (1971) find that separability
is not incompatible with observations in the framework of the full
transport equation. We will assume that (1.5.8) is at least
approximately valid.
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where p(T,t) is the relative perturbation and Vo/K is the unperturbed

modulation parameter. This implies that f(r) is unperturbed. This

also implies that we are, in essence, perturbing the whole solar medium.

However, since the low energy particles we observe in one day are responding

to only local conditions, what occurs over the rest of the solar cavity is

of little consequence.

We define the response to the perturbation to be p(r,T,t) as in

(1.5.6), and we shall attempt to find an explicit solution for pI in terms

of p. We start by assuming that the unperturbed solution, U (r,T) depends

only on Vo/K
o
(r,T), and satisfies the quasi-static Fokker-Planck equation:

U·) 2U V V
Fo( V'U + (f(r) - K (UO 3 aT2 (TUo)) = 0 (1.5.10)

K, 2 K r r K 3 To ar o o

We put (1.5.9) and (1.5.6) into (1.5.7) and obtain

92U V V

+ (UoU) + (f(r) K - P -) (Uo+UoVI)
9r2 ar2 0 K P-)rr (U+U(

0 0

2 o 2
r K (l+p) [Uo+Uo0 3 UT (T(Uo+UoP ))]

o
By subtracting F (V /Ko , U ) from (1.5.11) we are left with,

2(Uo) + (f(r) - ) (Uo)
0r2 ov (1.5.12)

o (U+U
)

2 2o 2 2 o (U +U 11)= 2 P(UO 3 (T U)) + K (+p) (- (TUo))
K 9r 0 o 3 r K
o o o

which can be rewritten as



p1 F , U)

au
DU+2 r
Dr

a + U 2
Dr o Dr2

a (U+ Uo) 2= 
Dr ' r

p [Uo

V
o

K
o

-3 aT (T Uo)]
3 DT 

p[Uo 32 D (TUoI)]

4 V0

3 Kr
o

TU --
o aT

(1.5.13)

By (1.5.10) PFo (Vo/Ko , U
o
) = 0, and since this

first order, we set second order terms in pp, i.e.,

V
o a 

K rp oK -a (U 11)0

calculation is to

and p (uP - 32 (T 3 
0 3 DT 0 )

to zero also. Finally, the observations of Rygg and Earl (1971) that

the Compton-Getting factor is zero, implies that

2 p[U

r K P[Uo

2 a
3 T (TUo) ]

is certainly of second order, and approximately zero.

We then have,

aDU
2 o ap +

Dr Dr

rK
o

V
o

V
o

o0

a21

ar 2

aD
o

ar

U 9 2
p + U

0 ar2 0

4T o
3 r

K
+ 0
V U

o o

(f(r) - o) Da
0

V
o ap
K aT

o

au \
DUo 

ar/
ar
ar

K

0

4 T a
3 aT

+ U (f(r)
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ar
ar

V
o

- p K
o

2 V
r K

o

or,

(1.5.14)

DU
ar

v
- 0) a

o (1.5.15)

P
= 

0
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We are left with an equation only slightly less formidable than the

one we started with. However, if we make some simplifying and plausible

assumptions, we can find an explicit solution for p in terms of p.

Note, if the unperturbed radial gradient of the cosmic ray density,

r/U aD /ar, is only a weak function of radius, or if we can assume that

the cosmic ray density's radial dependence is a power law in r, then the

"driving" term of (1.5.15), p(T,t) (r/Uo aUo/ar), is only a function of

energy and time, p(T,t) (r/U aU /ar) = g(T,t). In this case we can get
0 0

a simple solution to (1.5.15).

First we need not be concerned with a solution of the homogeneous

equation, i.e., when g = 0, for this gives the physically unreasonable

result of a change in the cosmic ray intensity p, when there is no change

in the modulation parameter. We desire only a solution to the particular

equation, g # 0. Since by assumption, g is only a function of energy and

time, a perfectly valid, albeit simple solution to (1.5.15) is given when

i(r,T,t) = p(T,t). In this case

4 a r o
3T i (T,t) = g(T,t) = p(T,t) U r (1.5.16)

0

or

3 /p
p(T,t) = (T',t) r r dT'/T' (1.5.17)

To see what a solution of (1.5.17) may be like, let r/U aDU /ar (T) =

n (T/To) , where n is the radial gradient when T = To, and a is the slope

of the energy dependence. Let the energy variation in p(T,t) be determined

by the average dependence of K 11 on energy, p(T,t) = po(t) (T/To)-Y,(with

y to be related later in terms of the power spectrum of the magnetic field).
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Then (1.5.17) becomes,

p(T,t) = 3 no po(t) (T'/To)p-l d(T/T) (1.5.18)

or

pi(T,t) = 3 nPo(t) (T/T )a-Y (1.5.19)4 o-y o

where we have set the constant of integration to zero to satisfy the

requirement that p = 0 when p = 0. Evaluating at T = T we get that

(T t) = n p /(oY) (1.5.20)

In terms of the definition of p and p, and our observations, we can

write (1.5.20) as

U> 4 (_ 3 V/KI /<V/K (1.5.21)

where we could also replace U with particle intensity or flux.

Thus, we have developed a formalism relating changes in particle

densities at low energies, (where the spectral slope is +1), directly

to changes in the locally observed modulation parameters. Unlike pre-

vious theories, this should be applicable on short time scales and does

not require knowledge of the radial variation of the diffusion coeffi-

cients or the distance to the solar cavity "boundary". However, it

does couple the observations to the cosmic ray radial gradient. Because

our physical expectation, as well as observation, is that p is anti-

correlated with p we hope that (a-y) < 0. We note that (1.5.20) is,

at least, a physically reasonable result, with the response of p to

p being proportional to the density gradient established by the ambient
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modulating region. That is, the more effective the medium is in

establishing a gradient, the more responsive it will be to changes.

Or, conversely, if no gradient is established, or the intensity is

isotropic, then a local perturbation in the modulation parameter will,

to first order, leave the intensity isotropic.

We will apply these results directly to our observations in later

chapters. We should point out that if, indeed, the cosmic ray gradient

has the form we assumed, measurements of p/p at various energies would

provide an indirect determination of the gradient and its energy depen-

dence. Thus, we may indirectly test the theory to see if our results

are in reasonable agreement with gradient observations.

1.6 Contribution of Discontinuities

The relationship between magnetic field fluctuations and particle

propagation has implicitly assumed that the spectrum of magnetic irre-

gularities as viewed by a spacecraft magnetometer is approximately equi-

valent to the spectrum sampled by the cosmic ray. This may not be a

correct assumption if tangential discontinuities are significant in

determining the shape and level of the magnetic field power spectrum.

We shall examine this point.

Classes of hydromagnetic discontinuities have been described in

a review article by Colburn and Sonett (1966), and discontinuous struc-

tures in the solar wind have been observed by a number of authors. The

classes of discontinuities we shall be concerned with are either "rota-

tional" or "tangential"; other discontinuous structures, such as fast

or slow shocks, occur too infrequently to be of interest to this study.
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A rotational discontinuity can be thought of as a sharp change in

the magnetic field direction where the change occurs along the magnetic

field line. Hudson (1970) has derived relations between the various

plasma parameters for a rotational discontinuity from shock conditions.

Since this discontinuity propagates at the Alfven velocity, it has been

thought of as a sharply crested Alfven wave. A tangential discontinuity

also involves a change in the magnetic field, but the change occurs nor-

mal to the magnetic field direction. This structure is non-propagating

and can be thought of as separating two adjacent plasma regions in equi-

librium.

Directional discontinuities in the magnetic field have been observed

by Siscoe (1968) and Burlaga (1969). Their conclusions, with, respec-

tively, Mariner 4 and Pioneer 6 data, are that discontinuities with

changes greater than 30° generally occur on the order of one per hour,

and are completed within 30 seconds. If these structures are basically

tangential discontinuities, then the interplanetary medium might be

considered as relatively disordered filamentary tubes of plasma, lying

on top of each other, and transported radially outward by the solar wind.

Single spacecraft. magnetometer measurements cannot distinquish be-

tween rotational and tangential discontinuities when the discontinuity

takes place between successive averages. However, with simultaneous

plasma data, one can determine if the discontinuity does or does not

satisfy the rotational or "Alfvenic" shock conditions. Burlaga (1971)

has done this for part of the Pioneer 6 data we will be utilizing in this

study. He finds that during the early Pioneer 6 mission, (December 18 -

December 25, 1965), less than 25% of the discontinuities can satisfy

the "Alfvenic" criteria, and, therefore, the majority must be tangential.
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For this study, therefore, we will assume that the majority of discon-

tinuities will be tangential.

One would expect that, insofar as the low energy cosmic rays are

concerned, rotational and tangential discontinuities should have dif-

ferent effects. A low energy cosmic ray, generally following the average

magnetic field between rotational discontinuities should be strongly

scattered when it encounters a discontinuity along the field line. However,

if the discontinuities are tangential,the cosmic ray whose gyroradius is

less than the average discontinuity separation may follow the field in

the filamentary flux tubes and rarely encounter, or be scattered by the

discontinuities. Let us examine this in more detail.

Assume that the field structure is basically turbulent or Alfvenic

fluctuations separated by tangential discontinuities occuring on the order

of one per hour, or of a typical cross section of Zd X VwUd X 1.5 x 1011 cm.

A 70 MeV proton, whose rigidity is % .36 BV, has a gyroradius in the average

interplanetary magnetic of 6 x 10
-
5 gauss of % 2 x 1010 cm or approximately

an order of magnitude less than the average discontinuity separation.

Clearly, it will rarely encounter a discontinuity except by drift or per-

pendicular diffusion processes. A relevant parameter we might consider

would be the typical time for the cosmic ray to suffer a large angle scattering

in the normal course of parallel diffusion. If the cosmic ray experi-

ences numerous "scatterings" by the fluctuations between discontinuities

before it encounters a discontinuity boundary, the discontinuities will

have little effect, on the average, on the process of diffusion parallel

to the magnetic field.

The time for a cosmic ray to suffer a large angle scattering in

parallel diffusion is typically given by T K /v 2 For a 70 MeVs I 1 For' a 70 Me
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proton with v 1l n .36c, KII X 2 x 1021 cm2 /sec, (where KII is an upper

bound since it has contained the contributions of directional discon-

tinuities, tangential or rotational), TS is approximately 15 seconds.

Drifts in the magnetic field will be represented approximately by

the curvature drift velocity. This is given by v = v=
c

2/ Br (rxB/r B),

where r is the radius of curvature and wB is the gyrofrequency. In

terms of the particle gyroradius, this is approximately vc % v11 R/Br .

For a 70 MeV (.36 BV) proton in a field of curvature radius 1 AU,

v X 1.5 x 107 cm/sec, and the time required to drift 1011 cm is
c

approximately 2 hours, certainly over an order of magnitude greater than

the 15 second scattering time.

Perpendicular diffusion, however, may be more effective. A particle

will diffuse perpendicular to the average field a distance d in time

T i
d2/Kl For KI 1 0 2 0 cm2/sec, and d X 1011 cm, this implies

T
1

\ 100 sec. With TS % 15 sec, the particle should still suffer numerous

scatterings before it "sees" a tangential discontinuity.

If we can estimate the contributions of the discontinuities and

fluctuations between discontinuities to the power spectrum, we should

be able to detect differences in modulation from these separate effects,

assuming the discontinuities are basically tangential. Thus, by uti-

lizing the considerations of the previous section, (1.5), as applied

to the theoretical determination of diffusion parameters, we may

for the first time, be able to directly test the relation of magnetic

field power spectra to low energy cosmic ray propagation. We should

also be able to test relative effectiveness of the discontinuities

and the fluctuations between them in the scattering process.



CHAPTER II

2.1 Data

The magnetic field data used in this study were obtained by a flux-

gate magnetometer aboard the Pioneer 6 satellite in 1965-1966. This

experiment has been described in Ness et al. (1966), Scearce et al. (1968),

and Ness (1970). Three orthogonal components of the magnetic field were

sampled at an average interval of 1.5 sec with a quantization error of

+ .25y, (1 y = 10- 5 gauss). These measurements were then averaged over

30 sec intervals with a resultant precision of approximately ± .05y.

Typical interplanetary field values were 6y. The 30 sec averages were

utilized to compute the power spectra over twenty-four hour periods for

approximately five solar rotations, December 17, 1965 - April 23, 1966.

The solar wind velocity measurements we employ were also obtained

on Pioneer 6. This experiment has been described by Lazarus et al. (1966).

We use only daily averages of the velocity in order to compute the dif-

fusion coefficients. The precision of the daily averages is approximately

given by their standard deviation. This was usually less than 7% of the

average speed of 4 x 107 cm/sec.

The daily modulation parameters we computed from the Pioneer 6 data

have been compared to particle measurements obtained simultaneously by

the scintillator telescope on the IMP III satellite. This data has been

kindly provided by Dr. Frank McDonald, and the experiment has been

described by Kinsey (1969). For this study we have utilized measurements

of the proton flux in three energy channels: 20-40, 40-60, and 60-80 MeV.

These will hereafter be referred to by their average energies, 30, 50, and

70 MeV. The typical uncertainty on a daily averaged 70 MeV flux measure-

ment was on the order of 25%.

35
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During this study, IMP III was in orbit about earth, while Pioneer

6 was injected into a heliocentric orbit. From December 17, 1965 to

April 23, 1966, Pioneer 6 fell from 1 AU to a heliocentric radius of

.82 AU. As shown in Figure 3, the Earth-Sun-Pioneer angle is always

less than 15 degrees. Considering both angular and spatial effects, a

field line transported by the solar wind along the classic Archimedes

spiral will intersect earth always less than .5 days after intersecting

the Pioneer 6 satellite. Thus, we can essentially neglect the separation

of the two spacecraft in comparing daily averaged IMP III proton fluxes

and modulation parameters computed from Pioneer 6 data.

2.2 Measurement of Power Spectra

Unless otherwise specified, the power spectra we obtain were com-

puted from finite Fourier Transforms of time series' correlation functions

according to procedures given in Blackman and Tukey (1958). A computationally

more efficient technique, the "fast Fourier Transform", would be more

desirable if there were the absence of numerous data gaps. This method

requires continuous data. Only isolated missing 30 second averages in the

magnetic field data would permit extrapolation without seriously affecting

the results. However, there are frequently large gaps in the data, and

extrapolation in order to use the fast Fourier Transform is inappropriate.

Therefore, we must employ the finite Fourier Tansform.

Our procedure is as follows: assume we have N data points, sampled

at equispaced intervals At over the time interval NAt. Since the data

is digitized,we can only estimate the power spectrum in the frequency

range of 0 - f , where f is the cut-off or Nyquist frequency, f = 1/2At.

We compute M autocorrelation lags on each field component's time series,
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where the l'th lag is given by:

N

R( ) N-9) X 'i-k i
i=Q+l

(2.2.1)

(1)2 N

xN-) i-. Xi

If either xi or xi.k is a missing data point, it is ignored in the

summations, and the quantity 1/(N-l) is correspondingly reduced. Thus N

in (2.2.1) is the number of actual measurements.

The autocorrelation function is used in computing M "smoothed" spectral

estimates:

P(k) = f| X 2 (l+cos -M cos M R(9) (2.2.2)

Our smoothing function is 1/2 (l+cos kr/M), the "hanning" function.

If P'(k) is the k'th raw estimate, smoothing by the hanning function gives

1 1
P(k) = 2 P'(k) + 1 (P'(k-I) + P'(k+l)).

Each spectral estimate we compute is a measure of the power in the

frequency range (k - 1/2) f c/M - (k + 1/2) fc/M, centered at k f /M,

(except for the first and last estimates which sample the power from

0 - 1/2 f /M, and (M - 1/2)fc/M - fc, respectively). Since we have

computed only for positive frequencies, we have the factor of 2 times the

summation. This gives the normalization that the sum of each spectral

estimate times its bandwidth is equal to the total power or variance in

the time series.
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Since we are dealing with a non-infinite, digitized data set, we

do not have the one-to-one correspondence in the time and frequency

domain which is obtained with continuous data of infinite extent. Instead,

each power spectral computation is aptly called an "estimate" over some

frequency range. Each estimate has an associated degree of freedom,

v = 2N/M. From a multiple of a chi-square variate at the equivalent

degree of freedom one can compute the degree of statistical confidence

in each spectral estimate. Because the greater our degrees of freedom,

the greater our "confidence", we try to compute the spectrum with as high

a v as possible, without sacrificing resolution in the frequency domain.

Clearly one of the effects of missing data is to decrease the degrees of

freedom at constant M and to increase the errors in the spectral estimates.

Digitizing may also present problems in spectral analysis from noise

and aliasing. The quantization noise of the magnetometer aboard Pioneer 6

is 0.13 y2 /Hz. This is quite low relative to the spectral levels we shall

be considering and manifests itself in a flattening of the power spectrum

when the Nyquist frequency, fc, is approached.

Aliasing, however, may be more serious. This occurs when the band-

pass of the instrument is greater than the Nyquist frequency. For Pioneer

6 the bandpass is from 0-5 Hz while the Nyquist frequency for the 30

second averages iS f = 1.67 x 10-2 Hz. Signals for frequencies greater

than the Nyquist frequency, but lower than the instrument bandpass, are

"aliased" to lower frequencies. It is easily shown that power at fre-

quency f will have contributions from frequencies (2n f -f) and (2n f +f)
c c

where n is an integer greater than one. The possibility that aliasing can

cause error in our spectral estimates cannot be eliminated.
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If the spectrum falls off rapidly with frequency, the effects of

aliasing can be assumed to be fairly small. Typically, spectra we observe

at high frequencies, (up to 1.6 x 10-2 Hz), fall off close to f-2 . Aliasing,

therefore, should not be too significant. Russell (1971) has shown that

with a high instrument bandpass to Nyquist frequency ratio, aliasing of

even an f-2 spectrum might be significant down to frequencies as low as

fc/2, as a worst case. When we make power law fits to the spectra neces-

sary in computing the diffusion coefficients, we only use estimates up to

frequencies fc/2 X 8 x 10- 3 Hz. For a 70 MeV proton we are :concerned with

frequencies of f X V B/2iR X 3 x 10-4 Hz, which are much smaller than

fc/2. By utilizing estimates only for frequencies lower than f /2 in
c c

computing diffusion coefficients, we should then be negating any effects

due to quantization noise and aliasing.

In limited cases we have used the method of nested variances to

obtain spectral estimates over broad frequency bands. This provides

ease and speed of computation but introduces a large loss in frequency

resolution. The conception is rather simple. The variance of the time

series represents the observable power between 0 and fc, the cutoff

frequency. If the time series is ergodic, i.e. stationary, then the

variance of that series averaged in twos should be representative of

the power in the range 0 - f c/2. Likewise for the range 0 - f c/4 for

averages in consecutive groups of 4. We can use these to compute the

power spectrum. If we take L averages of 2L length, the l'th spectral

estimate, representing the power in the range f /2 - fc/2 ,,

will be
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2r N/2LQ / 2 L-(j-1)
N/2 2 

_(~~ y iX (2.2.3)

i=lj= 2 L- (Z 1) (i-l)+l

except for the first estimate which will be

2L-2 N/2 L 2
2 L=N/2L- ll1 (2.2.4)

P1 Nf 2
c i=l j=2L-l(i-l)+l

where each average in (2.2.3) and (2.2.4) is weighted corresponding to

the number of missing data points. This is equivalent to the method of

Jokipii and Coleman (1968).

These will give rough, broad band spectral estimates over large

frequency ranges. Here the ranges go in inverse powers of two of the

Nyquist frequency, whereas the finite Fourier Transform method provides

equi-spaced spectral estimates. We only employed the nested variance

analysis to determine the power at low frequency and estimate the per-

pendicular diffusion coefficients. In that case we used 13 estimates

(L = 13) with a frequency range 2 x 10-6 to 1.6 x 10-2 Hz (Figure 4).

2.3 Selection of Discontinuities

Since this study covers approximately five solar rotations, selection

of the microscale directional discontinuities in the interplanetary magnetic

field had to be accomplished with computer assistance. We used various
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techniques for identifying the discontinuities by computer and found

that these would identify essentially the same set of discontinuities

that were obtained by previously established techniques relying on both

computer and visual determination. After we were satisfied that the

subjective visual criteria did not significantly alter our results, all

discontinuity selection was accomplished automatically via the computer,

removing personal bias.

For both historical and physical reasons we select discontinuities

with the criteria established by Burlaga (1969). There, discontinuities

were defined by a change in the field occurring within the 30 second

averaging period in the Pioneer 6 data and resulting in a greater than

30° change in the magnetic field direction. The field both before and after

the discontinuity was required to be relatively undisturbed, and thus the

discontinuity would appear to be a "step-function".

Siscoe et al. (1968) showed from higher resolution Mariner 4 data

that directional discontinuities have a "thickness" on the order of

4 x 108 cm, or are completed within 10 seconds. We therefore use Burlaga's

30 second criteria to avoid selecting longer period phenomena, which would

most likely be wave structures which would be "seen" by the 70 MeV protons.

We also set the 30° change as a minimum. We do this first because

smaller changes are difficult to distinguish from the ambient fluctuations

in the field. Secondly, Burlaga (1969) found that a small discontinuity

tends to occur more frequently than a large angle discontinuity, with an

occurrence frequency proportional to exp[-w2], where X is the angle

between the magnetic field vector before and after the discontinuity.

Small discontinuities occur on the average of one per hour, or at a

separation of 101 1cm. If we selected those discontinuities smaller than
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30° , these would, supposedly, occur at even smaller separations, on the

order of the 70 MeV protons' gyroradii. These discontinuities would then

contribute to the protons' scattering, regardless of whether they were

tangential or not.

Before the discontinuities were identified, noise points had to be

filtered out of the data. Such points, which would be seen as delta

functions in the data, were generally obvious and infrequent. They were

eliminated since such delta functions would give a large, white noise

contribution to the power spectra. Only three 24 hour periods during the

five solar rotations were considered so noisy that their spectra were

ignored in our results.

The fifty largest successive differences in the coordinate and

magnitude data for each day were examined for "noise". The maximum

allowable difference for each coordinate was set when noise data was

visually indistinguishable from fluctuations. The data was then re-

processed removing data points whose difference between the point pre-

vious was greater than the permitted maximum. A data point removed in

one coordinate was also eliminated in the others. On quiet days there

was no problem in distinguishing noise. For disturbed days, if there

was doubt, we allowed the data.

After bad data was eliminated, each day's discontinuities were

identified in the 30 second average Pioneer 6 data. The data was

originally in solar ecliptic format with XSE the vector from the space-

craft to the sun, ZSE out of the ecliptic, and YSE completing a right-

handed system. We used the following procedure:
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(1) Each magnetic field average was rotated into the vector system

(F,O, 0), where F was the magnitude,and 0 and 4 the direction out of,

and in the ecliptic plane, respectively. The angular change, w, between

each successive 30 second average was computed from,

cos m = cos81 cos82 cos(o1-42) + sin81 sin02 (2.3.1)

The time gap between successive vectors had to be 30 seconds and w ' 30°

for a discontinuity to be chosen and to be subjected to further tests.

(2) Only discontinuities occurring in relatively continuous data

were kept. Thus, those points which had a change 2 30° , but had data

missing within 2 points (one minute) before and 2 points after the change

were rejected. This was done since those points were required for further

tests.

(3) We tested to see if the discontinuity was imbedded in large

changes. Thus, discontinuities for which the vector change between

either two points before and two after were greater than 45° were also

rejected.

(4) We required that change be relatively constant or linear. That

is, the change in the vector field calculated from the average of two points

before the discontinuity and two points after must also satisfy the

2 30° change criterion.

(5) Since the change could be occurring between the 30 sec. averaging

period, two successive discontinuities, (double discontinuities), which

satisfied the preceeding criteria, would be permitted. Any other dis-

continuities occurring within a two minute period caused the rejection of
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both. This eliminated step-step or box-like structures which would more

likely be waves than tangential discontinuities. The times of the dis-

continuities which passed all these tests were then saved for later

referral.

We compared the discontinuities we chose via this program to those

selected by Burlaga (1969) using both computer and visual criteria with

a limited period of the Pioneer 6 data. For the comparable 24 hour

periods, the two sets of discontinuities were almost identical, with only

an average of one to two different choices. Thus, our computer criteria

was judged to be essentially identical to Burlaga's.

Burlaga (1971), using three separate data periods from Pioneer 6,

found that the number and characteristics of the discontinuities do not

change significantly from 1 to .8 AU. We have calculated the discontinuities

over the same periods continuously and arrive at similar conclusions.

Table 1 gives a representation of the number of discontinuities 1 30° as

a function of heliocentric radius. Given are the six 27 day averages

and standard deviations of the number of discontinuities per day for those

days where at least half the 30 second data is present. This is presented

with the corresponding Earth-Sun-Pioneer angle and heliocentric radii

over that period. In agreement with Burlaga (1971) we see that the

frequency of occurrence of discontinuities does not change appreciably.

The average is 28 discontinuities per day or 1.1 discontinuities per hour.

2.4 Calculation of Power Spectra

Since the theory relating diffusion parallel to the average field

depends on the power spectra of fluctuations perpendicular to the field,

we rotate the solar ecliptic magnetic field data into a coordinate system
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aligned with the field. For each 24 hour period, we define the Z axis

to be along the average magnetic field direction. Our other two axes

are arbitrary. We choose the X axis to be in the ecliptic plane. Since

this axis will be perpendicular to both the Z axis and the ZSE (solar

ecliptic), it will be either in the Z X ZSE or ZSE X Z direction. We

arbitrarily choose the direction Z X ZSE. The Y axis completes a right

handed system. The power spectra P and P will then represent fluctua-

tions perpendicular to the average field direction.

We would like to derive not only the power spectra from the real field,

but also the contributions of the discontinuities and the fluctuations

between discontinuities. Sari and Ness (1969) showed that a time series

based on step functions generated by discontinuities could, at times,

duplicate the spectra of the real field. They used discontinuities greater

than 15° and found a one to one correspondence in the step function spectra

and real spectra during quiet field conditions. We employ the same

technique here.

After the field has been rotated from solar ecliptic to field aligned

coordinates, the discontinuities previously identified from the methods of

section 2.3 are used to calculate a simulated time series for each co-

ordinate, X, Y, Z, and field magnitude F. Each simulated 30 sec average

is given a constant, (initially zero), value until an identified discon-

tinuity in the real data is reached. When one is, the difference between

the average value of the true field two points before, (1 minute), and

two points after is added to the constant value. This value remains cons-

tant until the next discontinuity is reached. The resultant time series

then resembles a set of step functions. These series are used to calculate

the "discontinuity" power spectra.
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Two different methods were employed to determine the spectra of

the fluctuations between discontinuities. We first tried the method

used in Sari and Ness (1970) of spectra from nested variances for the

periods between discontinuities. Although this gave adequate results,

it gave poor frequency resolution, and comparison with discontinuity

spectra proved difficult. One could simply compute the difference

between the real and "discontinuity" spectra for the "between" spectra,

but this gives no comparison of the adequacy of either "discontinuity" or

"between" spectra. It was felt that the best results occurred when one

computed the spectra of the real time series with the discontinuities

subtracted.

This "between" series was computed in the following manner. The

rotated data was used as measured until the minute before the first dis-.

continuity occurred. The difference between the average value of the

field coordinate two points before and two points after the discontinuity

was subtracted from all the data points following the discontinuity, until

the next discontinuity was reached, and the same method applied.

Since subtracting the value of the discontinuity from the points

immediately preceeding or following might give rise to either sinusoidal

fluctuations or delta functions at a discontinuity, a special technique

was employed for calculating the data at a discontinuity. After the

discontinuity had been subtracted a linear fit between two data points

(1 minute) before and two after the discontinuity was computed. The

values of the fit at 30 second intervals were computed and substituted

for the component values at the discontinuity. It was found that this

substantially improved the results, such that the ratio of the power from

discontinuities to real power at some frequency, plus the similar ratio

of between power to real power was usually close to 1.
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Power spectra were then computed for the real, between and discon-

tinuity time series for each component, (X, Y, Z), and field magnitude F

in the field aligned system. Each spectra covered 24 hours of data for

the period of December 17, 1965 to April 30, 1966, approximately 5 solar

rotations. One hundred twenty spectral estimates were calculated for

each time series. This gave a high equivalent degree of freedom, while

retaining good frequency resolution. If all the data in one day were

present, N=2880, the equivalent degree of freedom per estimate,

v = 2N/M ~ 48. This implies that we have 95% confidence that each

estimate's true value lies between 1.5 and .75 times its calculated

value. Days where enough data was missing such that v < 15, were

rejected as giving unreliable spectra.

The spectra then represented 120 equi-spaced estimates of the

magnetic field energy in the frequency range 0 - fc, or 0 - 1.67 x 10-2 Hz.

Each estimate covered the bandwidth of 1.38 x 10- 4 Hz and was centered

at frequencies k(l.38 x 10-4)Hz, k = 0,...120.

As had been observed in previous studies, the power spectra could

generally be represented by a power law dependence on frequency, A fa,

where a typically varied in the range 1.5 < a < 2.0. Spectra calculated

from the discontinuity series and the series representing fluctuations

between discontinuities tended to have separate and relatively charact-

eristic frequency dependence. As discussed in Siscoe et al. (1968) the

power spectra of an ensemble of discontinuities will vary as f-2 at

frequencies greater than the frequency corresponding to the average

separation between discontinuites. This was observed by Sari and Ness

(1969, 1970) for a limited sample of Pioneer 6 data, and our results
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over this larger sample were the same. The average slope of the dis-

continuity spectra was a = 1.95.

The power spectra from the fluctuations between discontinuities,

however, had an average slope of a = 1.65. This was also noted in Sari

and Ness (1970) using the cruder technique of nested variances

to compute the spectra. This is interesting since this is almost pre-

cisely the slope (-5/3) corresponding to Kolmagoroff's analysis of

homogeneous turbulence in the regime of high Reynolds numbers, (Batchelor,

1960).

Power spectral slopes for the real data generally varied between

the flatter slopes characteristic of the fluctuations between discon-

tinuities and the steeper slopes associated with the discontinuties.

The average value of the slopes of the coordinate (X, Y, Z) spectra of

the real data was a = 1.71. During days of quiet field conditions,

characterized by low values of the geomagnetic activity index K , and

clearly observable discontinuities separating regions of relatively

constant ambient field, the real spectra tended to have the steep

slopes similar to discontinuity spectra. During disturbed periods,

the real spectra had flatter slopes similar to the "between" spectra.

Although disturbed periods were characterized by more frequent discon-

tinuities,. at these times the activity in the field between discontinuities

is also much greater. This should account for the greater influence on

the real spectra apparently exercised by the between spectra during

disturbed times.

Since disturbed periods have power levels nearly an order of magnitude

greater than quiet times, they tend to dominate spectra obtained over

long periods. This is shown in Figure 4 for power spectra taken over
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10 days in 1965-1966 using the method of nested variances. At frequencies

greater than 10- 4 Hz the spectral slopes are -5/3, typical of the fluctua-

tions between discontinuities.

We should like to determine how accurately the power spectra of the

time series we generated from the discontinuities and fluctuations between

discontinuities represent their contributions to the real spectra. Figure 5

shows a representative period with the real, discontinuity and between

spectra for the components and field magnitude. The average value of Kp

was 1- , and the number of discontinuities that day was 20. The real

spectra is seen to have a slope intermediate to the between and discon-

tinuity spectra. The discontinuity spectra, having a steeper slope, is

seen to have a relatively larger contribution at low frequencies, (ap-

propriate for a 70 MeV proton), while the between spectra shows better

correspondence at higher frequencies.

Both discontinuity and between spectra show inordinately large

power in the first two estimates. We can attribute this to the random

nature of discontinuous changes in each separate component. The addition

or subtraction of these changes to the component values of che discontinuity

or between series causes an artificial random walk away from the average

field value in each component which does not occur in the real field

(which is constrained to an average value). This random walk causes an

addition of power in the simulated series at frequencies below the

average occurrence frequency of the discontinuities, fd X (3.6 x 103 sec)
-
l 1

2.8 x 10- 4 Hz. If we take the ratio of the total power in each component's

spectra from the simulated series to the real spectra for frequencies

higher than fd' we should get an estimate of how good our representation

is. For the spectra in Figure 5 the ratio between the total power in
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each component for the discontinuity to real, PD/PR, and between to

real PB/PR, for frequencies greater than fd is given in Table 2. The

ratio of PD/PR + PB/PR for each component is close to one. We have

calculated this ratio for each component for each day in our five solar

rotations. We find that the average value of PD/PR + PB/PR summed over

all three components for each day is 1.16 ± .03. Thus, we feel that our

representation of discontinuity and "between" contributions gives an apt

description of the true physical processes.

On the average, the value of 1/3 PD/PR was .25. However,
X,Y,Z

the spectra of discontinuities is generally steeper than the real. Hence,

at low frequencies, corresponding to the frequencies sampled by 70 MeV

protons, the contribution of discontinuities was greater than 25%, usually

on the order of 40%. Figure 6 shows the value of 1/3 I PD/PR as
X,Y,Z

a function of the number of discontinuities(' 309 per hour for each day's

data. There appears to be a definite tendency for a greater contribution

from discontinuities when more are observed. However, as mentioned before,

more frequent discontinuities are often observed at more disturbed periods

when the relative contributions of fluctuations between discontinuities may

also be greater. Thus, a good deal of scatter is seen in Figure 6.

As had been noted in previous studies, spectral levels of the real

data for fluctuations in the field magnitude were usually an order of

magnitude smaller than corresponding levels in the real component spectra.

Likewise, the levels of the X and Y spectra, representing fluctuations

normal to the average field, were generally greater than levels of the Z

component spectra. These results imply that the fluctuations are basically

transverse.

As the Pioneer 6 spacecraft went from 1 to .8 AU no significant change

was noted in the average slopes of the real, discontinuity and between
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spectra. Table 3 shows 27 day averages of the slopes of the X (ecliptic)

component spectra for the real,discontinuity and between data and the.

standard deviations. On the other hand, the change in the power levels

of all spectra from day to day was often an order of magnitude. Figures

7 through 11 show contour plots of the real spectra over-the five solar

rotations. Here the spectra are over 12 hour periods, with 60 estimates

per spectra, (leaving v ~ 48). Time is plotted on the horizontal and

frequency (Hz) on the vertical. The spectral densities are plotted in

shadings of 6 powers of 10 with solid representing 105-106 y2 /Hz. Also

plotted is the average solar wind velocity for each 12 hour period, 6V ,

the number of discontinuities and K . Dashed vertical lines represent

sector boundaries between regions where the interplanetary field is

generally outward, +, and inward, -. On a 27 day basis we see that the

average power levels do not seem to change, implying that the fluctuations

are essentially constant from .8 to 1 AU.

On a day to day basis much variation is observed in the spectral

levels. Periods of high power are generally located at or near sector

boundaries. One excepts somewhat higher power at a sector boundary

since it entails a large angular change in the field. However, the

increase is over longer periods, with some indication that there is

more power before than after a boundary passage. The increase of

fluctuations over a large area near a sector boundary is consistent with

the association of sectors near active regions on the sun. This is

seen during the Pioneer 6 data when one transposes the sector boundary

to the central meridian passage of magnetic active regions. The possible

asymmetry in the power about the sector is consistent with a recent
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observation by Sakurai and Stone (1971) where they note that type I radio

noise is generally associated west of where one would expect the solar

origin of the sector boundary. Their interpretation was that the field

structure above the active region where the sector boundary originates

is inclined to the east. Our results are not definitive enough to draw

the same conclusion. However, they do show that the fluctuations in the

magnetic field can be related to photospheric disturbances.

2.5 Calculation of the Diffusion Coefficients

In order to calculate the parallel diffusion coefficients by

Jokipii's formulation (1968b, 1971) the slope of the spectra as well as

their magnitude are needed. We therefore fit all the spectra, real,

discontinuity and between to a least square power law in frequency,

P(f) = Af
-

a. Since at frequencies below the average separation of dis-

continuities, fd' there occurs anomolous power in the simulated time

series as discussed above, we use only estimates greater than k = 3 or

f = 4 x 10- 4 Hz in calculating fits to the between and discontinuity

spectra. Since aliasing may be a factor, only the first 60 estimates,

f - fc/2, are used in the fit. Using the average magnetic field value

and solar wind velocity for each day the diffusion coefficients Ki

are then calculated from (1.3.13) for 30, 50, and 70 MeV protons from

the real, between and discontinuity spectra.

The parallel diffusion coefficients depend on the fluctuations

perpendicular to the average field. Since the spectra P xx(f) and P yy(f)

may not be equal, we compute K and K individually. We then use
xx yy

the average of the two for the parallel diffusion coefficients for the

three data sets, Kii = 1/2(K x + K y). Table 4 gives diffusion
II ~xx y
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coefficients computed at 50 and 70 MeV for the real, discontinuity and

between data for five solar rotations.

Jokipii (1971) notes that when applying the diffusion coefficients to

the modulation equations one should properly use the transformation:

Krr = K cos2 + K sin42 (2.5.1)

where p is the angle between the solar wind velocity and the spiral

direction of the field. This results from the rotation from a system

along the field to one along the radius vector. From section 1.3 and

Jokipii (1971), K << K which implies

Kr % KI cos2 i (2.5.2)

However, this assumes that the fluctuations as observed by the space-

craft and applied to Ki are the same seen by the particle. A simple

consideration shows this is not so. Assume that all the fluctuations

in the field are transverse to the average field and are polarized in

the ecliptic plane, (the same argument will hold if the polarization is

out of the ecliptic); then Pij(f) = P xx(f). Let us also assume momentarily

that the actual fluctuations are monochromatic, with a single wavelength

X, (this will hold for all wavelengths). If the wavelengths are frozen

into the wind and convected past the spacecraft, where the angle between

the field and the solar wind is p, the observed wavelength seen by the

spacecraft is not equal to the real. Instead the observed wavelength is

Xobs = X/cos (2.5.3)obs~~~~~~~~~~~~~~253

and the observed frequency
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fobs = (cos*) * f (2.5.4)

Since the diffusion coefficient is proportional to f , the observed

K will be related to the real in the frame of the field as

Kob s = (cos*)a K 11 (2.5.5)

This holds for all frequencies and polarizations in and out of the

ecliptic, thus, the diffusion coefficient we should be using in (2.5.2)

is

K \ Kii cos2 P = K (cosp)2 -a (2.5.6)
rr II obs

For this study a typically is between 1.6 and 2.0 and p is close to 45° .

Thus, Krr Kob
s
and we shall assume that the values of K we have computed

are a good approximation to what should be applied to the modulation

equations.



CHAPTER III

3.1 Relation of Changes in the Modulation Parameter

to Changes in the Particle Flux

Having obtained the diffusion coefficients for the Pioneer 6 data,

we are now prepared to compare changes in the relevant parameters, V ,

K, and V /K to changes in the proton fluxes at average energies of 30, 50,

and 70 MeV (20-40, 40-60, 60-80 MeV) as observed concurrently on the IMP

III satellite. According to the considerations of section 1.5, we expect

changes in the particle flux to be negatively proportional to changes in
, 7

V /K. Since these results also indicate that the particle flux does not

relax to equilibrium following a change in V /K until approximately 0.3
w

day has passed, we shall average all data by 3 days in order to be confident

that the time derivative in the Fokker-Planck equation can be ignored. Un-

less otherwise stated, all following results represent 3 day running means

of both propagation parameters and particle fluxes.

Since we are concerned with modulation of galactic particles, days

which indicate the presence of solar flare or plage effects are not

included in the flux averages. For instances where the effects of a large

flare are not immediately obvious we use as an indicator of a "non-quiet"

day the criteria of large increases in all energy channels with a greater

intensity at 50 MeV for protons than at 70 MeV, (in general under quiet

conditions j(50 MeV) < j(70 MeV)). The excluded days for the three chan-

nels and additional days for the 30 MeV data are given in Table 5. The

remaining data are used in the averages if at least two of the three days

in each averaging period are present.

55
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In Figure 12 we plot our results for the three day running means of

the 70 MeV proton flux, (top line), and the means of V /K, where K is

calculated for 70 MeV protons from the real, between and discontinuity

magnetic field times series, (second, third and fourth lines). The values

of V /K are multiplied by a characteristic heliocentric radius, R = 1 AU.

Since we expect that changes in V R/K to be anticorrelated with changes

in j(70 MeV), we plot the negative of VwR/K. The heavily dashed lines are

to indicate trends, and the lightly dashed lines are the standard devia-

tions. The vertical dashed lines are included for ease of following

simultaneous changes in j(70 MeV) and the various V R/K's. On the bottom
w

line the daily contribution of the discontinuities to the total power in

the magnetic field components are plotted.

Inspection shows that in the first part, Dec. 17 - Jan. 25, and,

interestingly enough the last half, Feb. 22 - April 23, when the space-

craft are most separated, changes in the particle flux are correlated

with changes in -V W/K, as predicted. It is obvious that the correlation
w

extends to changes greater than statistical error, and that the best cor-

relation exists between changes in j(70 MeV) and -Vw /K where K is cal-

culated from the power spectra of the fluctuations between discontinuities.

It is not surprising that if changes in j(70 MeV) are correlated with one

of the series of V)W/K it should be correlated with the others as well,

since all include parameters in common, such as V and B.

The times when the correlation breaks down, notably for the ten days

centered at Feb. 11, are characterized by generally quiet field conditions

where the real power spectra are often dominated by the discontinuities.
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Here the particle flux is decreasing to a minimum on Feb. 10, increasing

to maximum on Feb. 13, and decreasing to a minimum on Feb. 16. During

these times -Vw /K computed from the real and discontinuity power spectra vary

in the opposite manner. Only the relevant modulation parameters calculated

from the fluctations between discontinuities vary in the same manner as

the proton data.

At other times, Jan. 26 - Feb. 5, and Feb. 17 - Feb. 22, the changes

are neither clearly correlated or anticorrelated, within experimental error.

In Figure 13 we plot significant changes in the flux during periods

greater than our three day smoothing time as a function of corresponding

changes in the modulation parameters. Nineteen such periods are identified

and plotted. Changes in the 70 MeV flux are plotted on the horizontal and

simultaneous changes in V wR/K for the real, between, and discontinuity

data are plotted on the vertical. For visual convenience, only the

minimum and maximum error bars are included. We see that for all three

series the points tend to fall in the second and fourth quadrants, imply-

ing an anti-correlation between changes in VwR/K and changes in the proton

flux. However, only variations calculated from fluctuations between dis-

continuities are, within errors, consistently anticorrelated with changes

in the flux. The dashed line in the "between" graph in Figure 13 is within

all the errors, and the indication of a linear relation is consistent

with the results of section 1.5, particularly equation 1.5.20.

If both the fluctuations between discontinuities and the discontinuities

themselves contributed to the scattering process, we would expect that the

best anticorrelation in changes of the particle flux would be with changes

in the "real" parameters, with poorer anticorrelation with the between and
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discontinuity parameters. However, we clearly see that the poorest relation

is with the discontinuity parameters and the best, (and only consistent

one), with the between. Thus, we conclude that it is basically the fluc-

tuations between discontinuities which are scattering the 70 MeV protons,

a result to be expected if the discontinuities are tangential rather than

rotational.

In Figure 14 we plot the 70 MeV flux, but now with the diffusion co-

efficients and the solar wind velocity. Since we expect changes in the flux

to be correlated to changes in K, and anticorrelated to changes in Vw we

plot +K, (real, between and discontinuity), and -V . As before, we see

that changes in the particle flux are best correlated with changes in K

calculated from the fluctuations between discontinuities, especially

after Feb. 1, when the correspondence is almost one to one. What is more

interesting is that after Feb. 1 there is essentially no correspondence

between changes in the particle flux and -V . This does not invalidate

our previous conclusions, since theory predicts a relation between flux

and Vw/K, not Vw or K separately. It does, however, indicate the relation

between power spectra and diffusion coefficient holds at least down to

70 MeV, since the particles are clearly responding to changes in the

diffusion coefficient, rather than solely to changes in the wind velocity.

Further evidence of our conclusions that it is the fluctuations

between discontinuities causing the scattering is shown in Figure 15

where we plot the flux of the 30 and 50 MeV protons against -V W/K for

the real, between and discontinuity series calculated for 50 MeV. From

Dec. 17, 1965 to March 3, 1966, the correlation between changes in

j(50 MeV), (second line) and -V R/K (Bet), (fourth line), is, within
w

errors, consistent with an anticorrelation between AV w/K (Bet) and Aj.
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A poorer correlation between V R/K (Real), and V R/K (Discontinuity),
w w

(third and fifth lines), is also evident.

After March 3, any correlation breaks down, and the large changes

in V R/K in April are not reflected in the 50 MeV proton flux. However,

this may be the result of statistical fluctuations in the flux measure-

ments. The 40-60 MeV differential- intensity is the minimum of the low

energy cosmic ray proton spectrum, and probable errors in the particle'

measurements are large. Therefore, it is difficult to make definite -

conclusions in this energy range.

For the 30 MeV channel, (20-40 MeV), statistics are better since
~

the spectrum has turned up. Here, the lack of correlation between any

of the -VwR/K's and j(30 MeV) is evident. Although our analytical per-

turbation solution of the Fokker-Planck equation in section '1.5 does not

hold at the low energies, where the proton intensity spectrum no longer

has the slope of +1, we still expect changes in flux to be anticorrelated

to changes in VwR/K. Instead, while the modulation parameters exhibit

large changes, the quiet time 30 MeV flux is comparatively constant.

This result is subject to two interpretations. First, the relationship

between the magnetic field power spectrum and particle propagation para-

meters might be breaking down below 40 MeV, as suggested by Jokipii (1972).

Or secondly, as suggested by Kinsey (1969.) in' analysis of IMP III and

IMP IV data, such low energy protons are basically of solar origin. If

so, the processes which produced a continuous component of high energy

solar protons might be unrelated to the processes which cause fluctuations

in Vw/K, thus causing the lack of correlation. Future studies might re-

solve tfis by accurately measuring the radial gradient of the proton flux

below 30 MeV to determine whether or not the particles are solar.
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We summarize our results for all three energy channels in Figures

16 through 18. Here we plot thenormalized cross-correlations between the

day to day changes in the three day averaged particle fluxes and the

V k/K's and K's. Changes in the particle flux Aj(t) are correlated

between AVw /K(t+T) andZK(t+T) where T = 1, 2 ... days.

In Figure 16 we seen the results for the 70 MeV channel. As expected,

there is an anticorrelation between flux changes and AVwR/K, and a posi-

tive correlation between flux and K, with the best correlation with the

"between" parameters. However, we note that the main peaks all occur

when T = 2 days. Although the fact of our 3 day averaging causes an

uncertainty of ± 1 day, the time delay in the changes in flux followed

later by the appropriate changes in the modulation parameters is observ-

able in the unaveraged data as well. This implies that the particles are

responding to modulation changes between the earth and the sun, since

changes in the modulation parameters are expected to be convected out-

ward at the solar wind velocity. The fact that the Pioneer 6 satellite,

from which we determine the modulation parameters, is slightly closer to the

sun than IMP III reinforces this conclusion. Since we assume that the

70 MeV protons are of galactic origin, this seems at first an unexpected

result.

A possible explanation may be provided by Fisk et al. (1972). They

find that because the low energy proton intensity spectrum has a slope of

+1 in a regime where the effects of adiabatic deceleration are important,

it implies that the low energy protons we observe at 1 AU have, on the

average, come into the solar system at higher energies, traveled to

heliocentric radii less than 1 AU, and been scattered and convected back

outward. Although their model for the radial variation of K is different



61

than we observe, their results do imply that the low energy galactic

particles should respond to changes in the modulation parameters between

1 AU and the sun, changes we should observe after the corresponding changes

in the particle flux.

As seen before in Figure 13, the results of Figure 16 show that the

strongest anticorrelation with Aj (70 MeV) is from AV w/K (Bet), and the

strongest correlation with AK (Bet); the poorest correlations are with the

discontinuity parameters. The approximate seven day periodicity in the

cross-correlations resulting in positive peaks at +5 and -2 days essentially

reflects the quasi-sinusoidal periodicity in both the changes in flux and

modulation parameters.

In Figures 17 and 18 we see the decreasing correlations in the 50 MeV

and 30 MeV fluxes. The results for 50 MeV tend to show best correlations

when T =-1. However, as mentioned before, there is an uncertainty of + 1

day. The lower correlations may be the result of some combination of either

poorer statistics, solar contamination or diffusion coefficient breakdown.

On the other hand, the results for the 30 MeV protons in Figure 18 show

zero correlations. Since statistics are better, this is the-result of

either solar contamination or breakdown in the fomulation of diffusion

coefficients.

In Figure 19 we plot the values of AVWR/K (Bet) (t+2) and Aj(70 MeV)

(t). As suggested by the error bars in Figure 12 there is a good deal of

scatter in the day to day changes, as opposed to the trends of 3 days or

more. This is due to statistical fluctuations. The correlation co-

efficient is -0.25 and the mean regression coefficient is -0.35. The

least square fit is indicated by dashed lines. The standard "t" test

implies 90% confidence that a trend exists.
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We have shown that changes in the 70 MeV proton intensity are anti-

correlated to changes in the modulation parameters. These results will

now be related to the theoretical considerations of section 1.5. Recall

from (1.5.20) that if the cosmic ray gradient near 1 AU was independent

of radius, (r/Uo ) DU /Dr = no(T/To) , and the relative change in the modu-

lation parameter depended only on energy, and had the form p = Po(T/T o)-

the relative change of particle density, (or flux), was related to relative

change in modulation parameter by

3 noPo o-y
(T) = (T/T ) (3.1.1)

or, in terms of the definition of p and p, at T = T,

AU = 3 n wK(3.1.2)
<U> 4 (a-y) (3.1.2)

<Vw /K>

We have measured AU versus AV wR/K, and since we know <U> and <V k/K> we

can see if our results are consistent with measurements of the cosmic ray

radial gradient at 70 MeV, n , and its energy dependence, a.

First, we must be able to make a reasonable estimate as to the values

of y. From the definition of p we have

< > (l+p), orK K

V K
p = < -> 1 (3.1.3)K V

The theoretical relation of power spectrum to diffusion coefficient given

in O.3.13)states that if the power spectrum varies as f-a, the diffusion

coefficient will vary as BR2 - a. Thus, the rigidity dependence of p will

be a. Since > 1.7 and a is observed to ary betwee>-n 1.4 and 2,
be R< Since <a> = 1.7, and a is observed to vary between 1.4 and 2,
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p will have a rigidity dependence R- . 3 < p < R'3 . At 70 MeV, a proton's

rigidity and energy dependence is related by RactT 5 2. This implies that

y will typically have a value of -.15 < y < .15.

From Figure 13 we should be able to estimate the value of p/p (70

MeV). We expect that only lines through the origin are possible, (p = 0

when p = 0). We shall also only use the changes of flux with changes in

the between parameters. With <j(70 MeV)> = 1.5 x 10-3 #/sec cm2 str,

<V R/K (Bet)>= .18, and the slopes of the lines of Aj(70 MeV) vs.

AVWR/K (Bet) through the origin and consistent with all the error bars,

we find that p/p (70 MeV) = -1.1 ± .2. That is, a 100% increase in

V wR/K (Bet) leads to a 100% decrease in j(70 MeV).

Figure 20 shows the family of curves for the radial gradient, n,

and its energy dependence for 3.1.1) when y = .15, {as long as IYI < .15

our choice is not too important), and p/p (70 MeV) = -1.1. It is a

general feature of the set of curves that the lower the magnitude of the

gradient at 70 MeV the more positive is its energy dependence, while the

greater the gradient the more negative a must be. The upper three points

are measurements of the differential proton gradient in 1965 by O'Gallagher

and Simpson (1967), and the two lower points are measurements in 1968

by Lezniak and Webber (1970). (Not plotted are other measurements of the

integral gradient for energies > 30 MeV which are generally small and

on the order of Lezniak and Webber [1970]).

It is encouraging that our results are consistent with these two

measurements in terms of magnitude and energy dependence. Clearly, a

-determination of p/p at 50 MeV would indicate the curve appro-

priate for the time of our observation, (early 1966). Unfortunately,
, ...-
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the errors on the 50 MeV measurements are large. Using a graph similar

to Figure 13 for AV W/K (Bet) and Aj(50 MeV), (not shown), and neglecting

two points inconsistent with the expected anticorrelation, we can get

only the crudest estimate of p/p (50 MeV) and thus a measure of n and a.

It is interesting, but not too instructive that these results, together

with the values for the 70 MeV protons and standard error analysis gives

a gradient at 70 MeV of n = 1.60 ± 1.45, and an energy dependence,

a = -1.05 ± .95, or an average value which is the same magnitude and

energy dependence as observed by O'Gallagher and Simpson. However, the

errors are so large as to give results consistent as well with the

measurements of Lezniak and Webber. Thus, better particle measurements

at low energies are required before we could estimate the gradient from

these data.

The result that our entirely indirect measurements are consistent

with both the magnitude and energy dependence of the observed cosmic ray

gradient indicate the validity of our theoretical considerations of

section 1.5. It also indicates that with finer measurements we can use

observations of modulation parameter and flux changes to either compute

or check direct measurements of the low energy gradient on future space-

craft missions.

3.2 The Radial Variation of the

Parallel Diffusion Coefficient

So far we have discussed day to day fluctuations in the diffusion

coefficient and modulation parameter, V wR/K, as related to changes in

the cosmic ray intensity. As such, we have been interested only in

relative changes rather than absolute magnitudes or radial variation.
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We have shown that at least 70 MeV protons seem to be responding to

changes in the modulation parameter and diffusion coefficient as pre-

dicted from Jokipii's formulation. We would like to see if the magnitude

and possible radial variation of the computed diffusion coefficients can

be related to observations.

Since Pioneer 6-went from 1 to approximately .8 AU during our ob-

servations, we might determine if there was any secular change in the

diffusion coefficient, indicating a radial gradient. Unfortunately, the

large sinusoidal changes in K , especially toward the end of our compu-

tations, which gave the good correspondence with changes in the proton

flux, make an accurate determination of a radial gradient difficult.

However, over the past ten years of interplanetary satellite observations,

numerous observations of phenomenon such as magnetic sectors, recurrent

solar wind and solar particle events, which exhibit periodicities char-

acteristic of the solar rotation, indicate the existence of quasi-static

structures on the sun affecting the interplanetary medium. Thus, by

averaging our results over the solar rotation period (Q 27 days) we may

be able to lessen those temporal effects in the interplanetary medium

due to relatively static effects on the solar surface.

In Figure 21 we plot 27 day averages of K 11 (Real) and V versus

the heliocentric radius of the Pioneer 6 satellite during those times.

Although the standard deviations are understandably large, the results

indicate that the diffusion coefficient may be increasing (less scattering

of the 70 MeV protons) or at least stays constant as we approach the sun.

If we assume Kii = Ke(r/re)B, we see that Ke (70 MeV) ~ 1.9 ± .4 cm2 /sec

and -3.5 < B 4 O. This is somewhat surprising in view of the fact that

since the discovery of the spiral nature of the interplanetary magnetic
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field by Ness et al. (1964), whose magnitude, B, should increase as r

decreases, most models have assumed K11 proportional to some positive

power of r.

Although we have hopefully eliminated temporal effects by averaging

over approximately the solar rotation period, the possibility of temporal

variation exists. If so, it would be expected to appear as a change in

one of the parameters from which Kii is computed. Assuming that the

averaged values of Kii are correct, we would have to explain a 50% in-

crease in the diffusion coefficient. Let us examine V first.
w

From (1.3.13):

K
II

= 2a(a+2) cB R2/9Vw Pxx(f = V B/2uR)~~W x

we see that Kll depends explicitly on 1/Vw . However, if P varies as

Af - , then KacV . From Figure 21 we see that V is either constant
w w

or slightly decreasing, on the average, as the spacecraft approaches the

sun. Since the power spectral slopes, a , are always steeper than 1, a

temporal decrease in Vw would tend to decrease K I rather than increase

it.

Other variables which might effect a temporal change in K are the

power spectrum slope and levels, and the magnetic field strength.

The results of Tabhl q 3 indicate that the anvarig, o1ln: nf t

power

in K
II

althou

does n

vL ohU.LC J J-1W.L.Ca Ie LbLL Ihe aVerage s:opes LoU the

spectra are quite constant and could not account for a 50% increase

The contour plots in Figures 7 through 11 also indicate that

Lgh day to day changes in the power levels are significant, there

lot seem to be any average decrease which might account for an

2There have been recent indications that K11 increases toward the sun,
notably the interpretations of Jokipii and Parker (1968) to explain the
low radial anisotropy of 10 MeV protons observed by Rao et al. (1967).
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increase in K(r) in time. This is borne out by measurements of the

average power at a single wavelength, 1011 cm, shown in Figure 23, which

will be discussed later. Likewise, changes in B shown in Figure 23 are

consistent with the theoretically predicted average increase in the inter-

planetary magnetic field as r decreases. Thus, we are unable to account

for the apparent negative radial gradient in Kll as a function of time.

It is interesting that Jokipii and Coleman (1968).obtained similar

results for 1965 data taken between 1 and 1.5 AU by Mariner 4. Although

their uncertainties were also large, they noted a slight decrease in K

as r increased. Therefore, the indications are that near 1 AU the

parallel diffusion coefficient has a negative instead of a positive radial

gradient. In the following sections we will examine the implications of

the gradient and magnitude of KII on observations of both solar and

galactic protons and discuss a possible mechanism to explain our ob-

servations of Kll as a function of r.

3.3 Implications of observations

of Solar and Galactic Protons

Since the same Fokker-Planck equation (1.2.9) should govern both

solar flare propagation and galactic modulation, we should expect that

our results be consistent with both phenomena. Most studies have

treated the two separately. Because of the freedom in the choice of

relevant parameters, estimates of the magnitude and radial variation

of the parallel diffusion coefficient from the behavior of solar and

galactic cosmic rays have generally not been incompatible. However,

with recent observations and some plausible assumptions we can use the

solar and galactic phenomena to find limits on the magnitude and local
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gradient of the diffusion coefficient and compare these limits to our

calculations of Kll (r). We begin with the observations of flare

associated cosmic rays.

One of the first successes of diffusion theory in explaining cosmic

ray processes was the work of Meyer et al. (1956) on the intensity time

profile of the February 23, 1956 solar flare event. Meyer et al. con-

cluded that the results could indicate a relatively scatter-free inner

solar system and a thick diffusive shell past 1 AU extending to 5 AU,

which would then be the boundary of the solar cavity. This would account

for the rapid rise of the diffusive pulse of particles at earth,followed

by their decline and loss to the interstellar medium depending inversely

on time to some power. Although,as mentioned above, the idea of a

scatter-free inner solar system has fallen out of vogue, it is consistent

with our observations of a parallel diffusion coefficient which increases

toward the sun.

Flare events are usually complex. There are, however, characteristics

in common. For those flares, especially on the west limb of the sun where

the interplanetary magnetic field lines near earth are predicted to be

rooted and little perpendicular diffusion of observed particles at either

the sun or in interplanetary space is expected, the general features of

flare events have been similar: a fast rise time to maximum on the order

of a few hours or less following the visual flare, followed by a decline

in intensity either varying exponentially or as l/t to some power. These

have generally been fitted quite well by the diffusion approximation to

the Fokker-Planck equation:

= V . (K .V U) (3.3.1)at
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The solution of (3.3.1) for diffusion from a point source into

isotropic three-dimensional space has been a good approximation to the

results. If K is identified with the parallel diffusion coefficient,

K(r) = Ke(r/re)~, where K is the value at 1 AU, Parker (1963) finds

the time and radial behavior of the injected particles to be:

U(r,t) = N r 26/2-6/(2-6)(B+4)/(2-R) r (3/2-6)
0 e

expt [ e$:2t] (3.3.2)
t 3/2-13 (2-B)2t

At early times, the pulse decays as l/t (3/2-) later exponentially,

while the rise time to maximum at r = r is given by

tmax = re /3(2-B)K (3.3.3)

The decay phase of flare events has been fitted to this model by

a number of authors, notably Krimigis (1965). He finds that values of

B of 0 < B < 1, with 6 generally 1 are good fits to most high energy

(>40 MeV) observations. Burlaga (1967) using a different (anisotropic

diffusion) model and Kii (r) = const. also finds good correspondence with

the time profiles.

At first, this might seem to be in contradiction to our results.

However, since one eventually expects the interplanetary medium to merge

(by shock transition or otherwise) with the interstellar medium, where

there should be little scattering, one eventually expects K 11 to increase

as a function of r. Moreover, the decay phase of the event represents

the loss of the particles into the interstellar medium after the diffusive

wave has passed the earth. As such, it is mainly responsive to conditions

of the interplanetary medium past 1 AU, not in toward the sun.
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On the other hand, the rise time to maximum is essentially respon-

sive only to conditions between the sun and 1 AU, conditions for which

we have measured the diffusion coefficient gradient. Thus, we should

be able to use the rise times and (3.2.3) to check our results.

Although ignoring convection and adiabatic deceleration is not

strictly valid for protons of energies <100 MeV (Jokipii 1971), the

rise time to maximum is usually over too short a time scale for con-

vection or deceleration to be significant. Recent work by

Webb and Quenby (1972), numerically solving the full Fokker-Planck equa-

tion including the effects of convection and adiabatic deceleration

indicates that even at low energies (~ 1 MeV) the rise times are generally

only a factor of two less than the predictions of (3.3.3). For rise

times less than 10 hours, the results are essentially the same. (They

also conclude that B should be less than zero). Thus, (3.3.3) should

be a close approximation.

Burlaga (1967) has shown that the rise times to maximum are associated

with the solar longitude of the flare, with the fastest times corresponding

to flares west of solar central meridian. Since these longitudes should

be associated with magnetic field lines at earth, the particles whose

average arrivals are the fastest will have directly sampled conditions

along the magnetic field from the sun to the earth. These should be the

most representative tracers of the parallel diffusion coefficient. In

accord with other observations through the solar cycle, McCracken et al.

(1967) finds that the fastest rise times for protons of energies 45-90 MeV

in 1966 are on the order of 1-3 hours. It will be for these values of

t that we will compare our observations.max
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We note the general feature of (3.3.3) is that for a chosen value

of tmax the more positive B, the larger K is required to be. In

particular, if B = 1 all the way to the sun, Krimigis finds that for

-conditions in 1961 with tma
x

b 3 hours, K (70 MeV) t 8 x 1021 cm2 /sec.

Since r is a minimum path length for the particle to travel (due to the

spiral field), the K (70 MeV) that Krimigis predicts is a minimum and

almost 4 times larger than even our largest measurement of Kii at 1 AU.

Measurements of power spectra in 1962 by Coleman (1966) indicate it is

unlikely K increases at all at solar maximum. If we assume the

worst value of B in our measurements, B X 0, our measured value of

K
e
% 2 x 1021 cm2/sec. gives a minimum rise time of only 5 hours.· How-

ever, if X% -2 and K % 2 x 1021, we easily get a 3 hour rise time.

Thus, solar flare observations indicate that if the magnitude of the

diffusion coefficients we calculate at earth is correct, its observed

negative gradient between .8 and 1 AU is also real.

We can also use the observations of the galactic proton spectrum to

get some limit on B and Ke near 1 AU. The observation of Rygg and Earl

(1971) that the Compton-Getting factor is zero in the range 50-200 MeV,

as mentioned in Chapter 1, implies that the quasi-static, spherically

symmetric Fokker-Planck equation (1.5.7) has the value near 1 AU of

a2U+ aK K 2 Vw = 0
+ W r (3.3.4)

or

r K2U + _K V 
- +2 + 2--- 0 (3.3.5)

U 8r2 r jU 8r... : r 2
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Althoughthis does not limit K(r), observations of the cosmic ray radial

gradient, 1/U DU/Ir, and estimates of the unmodulated spectrum and solar

cavity boundary can give us some idea of the behavior of the second

derivative D2U/ar2 , and, therefore, a possible limit on the variables.

Most observations of the radial gradient in the 70 MeV range tend

to be small (20% per AU) and positive (O'Gallagher,1972). The observations

of Rygg and Earl (1971) indicate that between solar minimum and maximum,

the intensity of 70 MeV protons varies by a factor of 6. If one also

assumes that the unmodulated cosmic ray spectrum varies as some function

of energy, T- Y, normalized to the high energy observations where the

modulation is relatively ineffective, the difference between the minimum

intensity at 1 AU and the assumed unmodulated value is between a factor of

10 (Figure 1) and a factor of 60 (Goldstein et al.,1970).

Most deductions from solar flares, (Parker,1963; Burlaga,1967;

Lanzerotti,1969) indicate the solar cavity boundary is within 6 AU.

Since fast rise times of flare particles indicate little scattering

between the sun and 1 AU, the gradient cannot be too large in toward

the sun. Thus, to account for a factor of 6 change in intensity over

the solar cycle (not to mention a possible factor of 60) with a 6 AU

modulating region, requires an average gradient much greater than 20%

per AU. For.at least some distance beyond the orbit of earth, the radial

gradient must increase. This, in turn, implies that the derivative of

the gradient, D2U/ar2 , is positive. In order that both 32 U/Dr2 and

aU/ar > 0, the result of (3.3.5) demands that

r 2 K ) 0 (3.3.6)e aK2-(.36
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in the vicinity of 1 AU. If at 1 AU, K = K (r/r )8, (3.3.6) gives

\ ~~e /
2 -w e <0 (3.3.7)

O'Gallagher and Simpson's (1967) measurements which gave a gradient on

the order of 200% per AU at 70 MeV might conflict with our conclusion of

a2U/ar2 I 0. However, even this is less than required for the difference

in the presumed unmodulated spectrum. Moreover, those measurements were

on board Mariner 4, and were between 1 and 1.5 AU. If K is decreasing

radially, as both we and Jokipii and Coleman (1968) suggest, the modu-

lation should be more effective and the gradient should be increasing.

O'Gallagher may have then measured the average gradient between land

1.5 AU, greater than the gradient at 1 AU. This might explain the dis-

crepancy with measurements near 1 AU where the gradient was always small.

In that case a2 U/ar2 is still greater than zero at 1 AU and (3.3.7) still

holds.

Note, that (3.3.7) is an important result. Given r = 1 AU and the

average solar wind velocity, Vw, it puts a limit on a as a function of

K . With V = 4 x 107 cm/sec, a value of 8 = 1 implies that V r /K X 3,

a value 6 times greater than we measure, or a value of Ke 6 times less

than computed. On the other hand, a value of 8 <-1.5, is consistent

with our calculations of V r /K X .5.
we e

While the rise times of solar flares., (3.3.3), implied the more

positive B, the greater Ke must be, the observations of the galactic

spectrum at 1 AU imply the opposite: the more positive B, the smaller

Ke to satisfy (3.3.7). We can use this fact to get a limit on the values

of $ and Ke which mutually satisfy the solar and galactic observations.
e
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In Figure 22 we plot the results of (3.3.3) and (3.3.7) for r = 1 AU,

V = 4 x 107 cm/sec, and various values of t as a function of 8 and Ke.w max

Our measurement of the average value of Ke and its possible gradient

is shown as the shaded area. The dotted line, 8 ' 8 critical is the

solution of (3.3.7) for (8 + 2 - V re/Ke) = 0. Only values of B and

Ke to the right and below 8 B critical will satisfy the galactic ob-

servations. If we wish then to be consistent as well with the solar

observations, they must also intersect the curves for t . We note thatmax

in order to get a Compton-Getting factor of zero3 and a rise time of 2

hours for 70 MeV protons, as is commonly observed, B between the sun and

earth must be less than -1 and K must be greater than 2 x 1021 cm2/sec.

We see that our calculations do satisfy this for 3 hours but not

quite for 2 hours. For such small rise times, the results of Webb and

Quenby (1972) imply that any correction due to deceleration and con-

vection will be small but will cause the curves for t to be lowered.
max

More significantly, the indications of section 3.1 are that the proper

K should be computed from fluctuations between discontinuties. Our

results give K (Bet) > K (Real) with an increase in Ke of approximately

30%. We then get a good correspondence with solar and galactic obser-

vations.

Note that the limits in B and Ke from Figure 22 are based on only

two assumptions: that for r < 1 AU, the effective diffusion coefficient

3The recent theoretical work of Fisk et al. (1972) also demonstrates
that fits to the Fokker-Planck equation give a Compton-Getting factor
most constantly zero when there is no scattering between 0 and .7 AU.
However, their model of an exponentially increasing diffusion coef-
ficient at 1 AU is inconsistent with our observations.
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is given.by Kii (r) a (r/r e); and that 20U/ r2' O for galactic protons

at 1 AU. Since rise times are so fast, any large decrease in K within.:

a few solar radii of the sun is either not occurring, or is over too:

small a distance to significantly slow the propagation of solar flare

cosmic rays to earth. K a (r/re)B should then be a good approximation.

Likewise a small solar cavity and a small cosmic ray radial gradient

at 1 AU implies 32U/ar2 I O. Thus, previous assumptions of a diffusion

coefficient increasing monotonically with heliocentric radius were

probably in error. With both direct observations and theoretical

considerations this study indicates that from near the sun to some

distance past 1 AU the parallel diffusion coefficient is decreasing

with increasing radius.

3.4 A Mechanism for the Radial Variation

of the Diffusion Coefficient

Just as the correspondence between changes in V wR/K (Bet) and the

particle flux with the measurements of the cosmic ray radial gradient

was encouraging, so is the correspondence between the magnitude and

gradient of the diffusion coefficient with solar and galactic observations.

These also imply that the coefficients, as predicted in Jokipii's theory,

are correct. For a final consideration it would be interesting if we

could explain the increase of the diffusion coefficient toward the sun.

One such mechanism might be Belcher's (1971) theoretical considera-

tions of Alfven waves in the solar wind. He suggests that as the magnetic

field spirals, the ratio of AB/B for outward propagating Alfven waves

increases until they become magneto-acoustic waves and are damped. Thus,

for a while, fluctuations in the field should grow as a function of radius,
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implying more scattering and a decrease in K . A recent private com-

munication with Jokipii indicates that for small heliocentric radii both

propagating (Alfvenic) and stationary (tangential discontinuities) phenomena

can give a decrease in K as a function of r. However, we shall consider

only our observations here.

In the earlier discussion of the lack of temporal dependence in the

parameters which determine K 11 , we noted that both V and the average

spectral slopes remained constant. Likewise, the contour plots indi-

cated the average power levels did not change. This is Verified in Figure 23

where we plot the average power at f = V /1011 cm, or at the wavelength

of 1011 cm. We do not include the correction of section 2.5 for the

angle of the average field, cosp, not along V . However, this is re-

latively constant, and, in view of the uncertainty does not affect the

results.

In Figure 23 we see that the average value of P(X=101 1 cm) remains

constant as a function of r, and cannot account for the increase in the

average value of Ki . The only parameter which shows significant change

is the magnitude of field B, which is also plotted in Figure 23. We do

not expect that this is temporal since it closely corresponds to the

theoretical increase in B in the ecliptic plane as r decreases (Parker,

1963):

Br ' Br(r, 
=

) (re /r)
2

Be(r,eO,) = O

..r r
B (r, 8= B(r) e e (3.4.1)

2 r e _TV r
w
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where Q is the solar angular velocity. Between .8 and 1 AU this gives a

variation in B approximately as

B(r) R B(re) (r/re)-3/2 (3.4.2)

We, therefore, can see the cause of the increase in K11 as r

decreases. As the particle goes toward the sun its gyrofrequency in-

creases due to the increase in B. Therefore, the frequency of those

fluctuations which reasonantly scatter it, f = V B/2rR, is increasing..

If both the power spectral slope and power levels remain constant, as

indicated, the particle is responding to fluctuations of higher frequency,

and, since the spectral slope is negative, fluctuations of smaller mag-

nitude. Let us see if we can account for -3 < B < -1.5 in this manner.

Assuming all other parameters in (1.3.13) remain constant, the variation

in K(r) will be due to the variation B(r). Since K a f and f = V B/27R,

K(r) a B(r) . From (3.4B(r) varies as r- 3/2. Thus, with a = 1.7,

K(r) a r-2.5 , or a X -2.5. This is in agreement, within our errors,

and is essentially the best value of 8 we measure from Figure 21. Thus,

we have a mechanism which can explain the radial variation of K.

Although our results do not indicate that AB/B increases with r, they

do imply that the ratio AB/B is relatively constant. As long as the

spectral slope does not change, this indicates a regime where K(r) de-

creases as r increases. From (3.4.1) we see that B varies as r
-
2 near

the sun, and r- 1 for large r. Thus, a regime of constant power levels

gives a more negative 8 nearer the sun. We expect that other processes

will cause Ki to increase toward the solar cavity boundary, but there

is no reason why the power levels should not remain relatively constant
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for much of the distance between the sun and the earth, causing a

negative gradient in K.

We have then seen that both our calculations and order of magnitude

considerations of solar and galactic effects predict a local negative

gradient in the parallel diffusion coefficient. We have arrived at a

simple but physically reasonable explanation for this.

3.3 Summary

In this study, we have set out to directly test the magnetic field

power spectrum-diffusion coefficient relation for low energy cosmic rays,

at energies where the theory has been in doubt. We have attempted to

determine if the particles are being scattered by the magnetic field

discontinuities or by the fluctuations between discontinuities. Finally,

we have compared the magnitude and possible radial variation of the pre-

dicted diffusion coefficients to observations of solar and galactic cosmic

rays. Now, we would like to briefly summarize our more important results

and suggest the possibility for future studies.

1. We feel that we have been able to describe the relative contri-

bution of the discontinuities and fluctuations between discontinuities to

the power spectra of the interplanetary magnetic field and, hence, to

the predicted diffusion coefficients.

2. At energies between 60-80 MeV, galactic cosmic ray protons are

responding to changes in the predicted diffusion coefficients, implying

that the power spectrum-diffusion coefficient relation holds to these low

energies.
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3. The relation between changes in the proton flux and modulation

parameters is best when the contribution of discontinuities is subtracted,

indicating that the fluctuations between discontinuties are causing the

scattering.

4. Since the correspondence between flux and parameter changes is

poorest in the coefficients calculated -from the contribution of discon-

tinuities, this suggests that a large percentage of the discontinuities

are tangential rather than rotational.

5. The response of the 60-80 MeV proton flux to changes in the

modulation parameters is in agreement with a perturbation solution of the.:. 

Fokker-Planck equation appropriate for low energies where the Compton-

Getting factor is zero. Our computations indicate a general class of

of results compatible with measurements of the magnitude and energy de-.

pendence of the cosmic ray radial gradient for T < 100 MeV. Since direct

gradient measurements are difficult, this technique might lead to.either

checks or determinations of the gradient on future deep space probes.

6. There is little relation to changes in the modulation parameters

and changes in the intensity of 20-40 MeV protons. This may be due to

either a break down of the power spectrum-diffusion coefficient relation.

at lower energies or the predominance of a large "quiet time" flux of

solar origin. Accurate determinations of the low energy differential

cosmic ray radialgradient might clarify this-.

7. The computations of the magnitude and radial variation of the

parallel diffusion coefficient indicate an average value at the orbit of

earth of K 11 (70 MeV) P 2 x 1021 cm2 /sec, and a local radial gradient

between .8 and 1 AU on the order of,-200% per AU. This is found to be con-,-

sistent with the predictions of diffusion fits 'to solar event rise times
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and the observation that the Compton-Getting factor is zero for galactic

cosmic ray protons between 50-200 MeV.

8. A mechanism is found to explain the gradient in the diffusion

coefficient in terms of its relation to the magnetic field power spectra.

Hopefully, future satellite studies which monitor the interplanetary

field will make measurements of the diffusion coefficient over larger

radii. Future numerical fits of the Fokker-Planck equation to the galactic

spectrum using diffusion coefficients with negative gradients from the sun

to 1 AU, and positive gradient perhaps after 1.5 AU may resolve the dis-

crepancy between various cosmic ray gradient measurements.

Recently, Earl (private communication) has rederived the expression

for the diffusion coefficients suggesting that Jokipii's original (1966)

formulation, which does not utilize the Legendre expansion, may be more

correct than the 1968 formulation. As we mentioned in section 1.3, the

differences between the two are not large unless the power spectrum slope

approaches a = 2, and the diffusion coefficient (1966) approaches infinity.

This is interpreted as insufficient power at high frequencies to scatter

the low pitch angle particles, 1 %~ 0, which sample wave numbers k = 1/prg.

These particles can never be scattered and cause the diffusion coefficient

to diverge.

BY rederiving the diffusion coefficients via the Jokipii (1966)

formulation we would probably see even poorer correspondence between

intensity changes and V wR/K (Discontinuity), since the power spectrum

from the discontinuities generally varies as a = 2. It is doubtful,

however, that a rederivation would demonstrate a better relation with

the flux and the "between" parameters, since within errors this corres-

pondence is as good as it probably can be.
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Our results may also imply that the mechanism suggested by Noerdlinger

(1968) is correct. Here the low pitch angle particles may be scattered

by mirroring when AB/B is large. This keeps the diffusion coefficient (1966)

from diverging when a = 2. Such a possibility is physical and is not

covered in the statistical theories of Jokipii. We propose a future

study comparing the results of Jokipii's (1966) and (1968b) calculations

to changes in the cosmic ray intensity. If such a study showed that

Jokipii's earlier (1966) formulation gave poorer rather than better

results, this may imply that Noerdlinger's mechanism is operative in

the interplanetary medium.
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TABLE 1

Period Earth-Sun-Pioneer Angle Heliocentric No. of Discontinuities/
Radius Day > 30°

65/351 - 66/12 0 - l,4E 1.0 - .99 AU 30.4 + 10.6

66/13 - 66/39 1.40 E - 1.70 E .99 - .96 AU 25.3 + 12.2

66/40 - 66/66 1.70 E - 0.60 W .96 - .91 AU 36.6 + 17.1

66/67 - 66/93 0.60 W - 6,50 W .91 - .85 AU 24.4 + 13.6

66/94 - 66/120 6.5 °W - 16.10°W .95 - .81 AU 24.7 + 10.6

66/121 - 66/147 16o.1 - 27.40 W .81 - .81 AU 26.5 + 13.9



TABLE 2

Day 66/32

< PD/R R

0.45

0.51

0.24

0.14

< B/PR >

0.62

0.58

0.90

0079

<P /P+PB/lp>

1.07

1.09

1.14

0.93

X

Y

z

F



Heliocentric
Radius

65/351 - 66/12

66/13 - 66/39

66/40 - 66/66

66/67 - 66/93

66/94 - 66/120

1.0 - .99 AU

.99 - .96 AU

.96 - .91 AU

.91 - .85 AU

.95 - .81 AU

1.72 + .36

1.75 + .17

1.70 + .13

1.70 + .11

1.70 + .11

1.70 + .18

1.71+ .19

1.61 + .23

1.64 + .22

1.57 + .28

1.95 + .04

1.94 + .06

1.93 + .07

1.94 + .09

1.95 + .07

Period

TABLE 3

a (real)x a x(bet)x
a x(dis)x



Table 4

K(C50) *(**21) CM2/SEC

REAL L;ISCONT INUITY

2.93
1.16

I .93

0.9o

1.38

1.62

0.71

I .09

I .51
1.41

1.37

2.0i

I.98

1.21

1.11

1.91

2 028

I .20

1.72

1.31

1 .84
1 .41

2.51

2.13

2 .25

1 .92

2.1o
I .49
1 .00

I .95
3 .4o

1 .44

1.27

1.77

1 .41

1 .70
2 .64

I .50
2.35

1 .74

1.79

1 .07

0 .35

1 .34

2 ,8

1 .25

1 .80

I .30

0 .. i7

0 OD

11.15

3.46

6.91

2.61

2.16

3.33

3. 59
2.48

3.74

3.31

2.95

2. 34

4.92

5 38

5.30

2 .81

4.29

5.27

6.27

4.33

6.23

3.e89

4.96
3.77

7.59

6. 13

16. 12

12. 76

5.84
7.48

6.14

2.95

3.73

7.66

15.04

9.19

IO.C4

2.87

5.78

3. 3

5 34

15.88

2.57

10.55
6.70

9.01

IC.44

3 .- eo
1.90

2.C4

20. e85

2.92

8.83

3.76

2.14

5.31

K(70)*(10**211 CM 2/SEC

BETWEEN

4. 12

1.72

2. 90

1.66
5.07

2. 13

3. 17

1.23

1.75
1.77

3. 83

4.35

4.11

4.08

3.94

3.00

2.08

1.71

3.30

3.08

1.97

2.70

2.90

3.95

2.61

4.15

3. 15
2. 14

2.94

3.23

3.55
2.* 78

2. 14

2.51

3.47

5.39

2. 12

3.e3

2. 19

2.24

2.69

3.31

3.35

5.48

3.21

2.43

1.86

3. 17

1.64

2.91

2.99
3.59

2.42

2.e4

4.01

1 80

1.32

REAL DISCONTINUITY

3.53

1.39

2.37

1.1 
1. * 70

1.47

1 .94

0 .88

1.40

1.35

1 .99

1 .79

1.68

2.5

2.46

2.23

1 .46

1.35

2.33

2.72

1.49

2.12

1 .66

2.32

1 .73

3.12

2.57

2.44

2.70

2.42

2.72
1 .93

1 .27

1.54
2.46

4.39

2.50

1 .72

1 .52

2.11

1 .77

2.14

3.30

1 .85
2 89

2.10

2.18

2.66
1.34

1.06

1.60
3.55

1.53

2.23

1.59

1.09

0.84

13.27

4.08

8.32

3.14
2.60

4.32

4.25

3.03

4.48
4.01

4.42

3.69

2.81

5.93

6.55

6.34

3.30

5.14

6.26

7.24

5.24
7.55

4.84

6.02
4.56

9.14

7.25

18.46

15.28

7.05
9.07

7.67

3.62

4.62

9.51

18.14

10.38

14.35

3.41

6.67

4.62

6.59

18.96
3.11

12.51

7.89

11.05

12.68

4.27

2.34

2.39
24.94

3.51

1 3.63
4.57

2.61

7.01

BETWEEN

5.08

2.09

3.62

2.10

6.62

2.69

3.89

2.21

2.22

4.98

5.82

5.31

5.13

5.04

3.73

2.54

2.10

4.14

3.73

2.49

3.38

3.72

5.20

3.29

5.30
3.84

2.50

3.52

4.24

4.65

3.71

2.e3

3.25

4.42

6.97

2.52

4.26

2.55

2.72

3.47

4.25

4.25

7.51

3.99

2.98

2.27

3.98

2.14

3.67

3.83

4.48

3.02

3.3C

5.04

2.37

1.69

YEAR DAY

65 351

65 352

65 353
65 354

65 355

65 356

*65 357

65 358

65 359

65 360
65 3651

65 362

65 363

65 364

65 365

66 1

66 2

66 4

66 5

66 6

66 7

66 a

66 9

66 10

66 11

66 12
66 17

66 18

66 20

66 21

66 22

66 23

66 24

66 25

66 26

66 27

66 29

66 31

66 32

66 33

66 34

66 35

66 36

66 37

66 38

66 39

66 40

66 41

66 42

66 43

66 44

66 45

66 46

66 47
o6 49

66 50

66 51



Table 4 con.

K(0) *(1C**21) CM2/SEC

BETWEEN

3. 58

2.65

1I83
2.93

3.30

5.49

3.88

4. 39

2.42

1ie4

3.40

4.18

2. 39

4.68

3.24
2 20

2.99

2. 57
3 38

3.51
1.82

2.95
2.94

2.81

1.99
7. 17

2.86

3. 12

2.93
I.e2
4.34

2.14

3.41
. 62

2.43
1.61
6.62

2.54

6.70

4.22

7.52
6.08

1. 62
3.41
1 * 54

2.28
2.92
2. Ed

3.86
1.87
2. 17
7 C06

8.22

tAL DOISCCNTINUITY

2.27
1.45
0.79

1 .o

1.72

3.15
1.53
1 .44

1.2;

1 .05
0.95

12 .4J

I .Os

1 .ŽG

2.43

1 .6

1.30
2 .43
1.52

12. 

1 .93
3.34
2 .40

1 .32
2.77
1.27

I .1o

I .64

1.03

.32

J .OJ

1.57
. .4

1.11

I .47

1 .o0

3.3o

1 -o2
I .2

4.17

o .43

7.03

4.2C
2.82

a.69

5.91

19. 8
5. 34
3.28

2. 8C

10.42

2.49

2.01

9 58

5.56

7.94
5.93
3.42

2.63

2.99

4 .60

8.62
6.06

3.4s
44. 31

13.43

7 .8C

6.13

12.77

7.21

20 . 85

12.66

6. 15
18.87

6.29

2. 59

2.71

4.5C
4.47
6.62

22.72

12.46

19.32

19. C8
7.87

7.17

7..e7

.4 .* 6

3.97
5.02

3. 22
7.93

*.34

11 92

I 5.48

K(701*(1i**21) CM 2/SEC

REAL DISCONTINUITY BETWEEN

2.81
1 81
1.02
2.11
2.22
3.93

1.98

1.79

1.64
2.07
1.16

1.42
3.61
1.85
3*09

2.35

1.31
1.45
1.62
2.89
2.18
1.99
2.05
1.62
3.04

2.08
1*95
3.41
2.37

2. 39
4.05

3.08

1.62

3.45
1.53

1.40

1*06

1.96
1.37
3.94

2.62

4.09

3.78
6.46

4.39

! .93
3.06

1.36
1.82

1.98
2.10

4.79
2.20

1.53

5.53

3.00

8.48
5. 11
3.59

10.99
7.31

25.94
6.85
3.98
3.49

12.50

2.95
2.53

11.51
7.26
9.45
7.14
4.16
3.17
3.60

1i.14
5.55
9.96
7.43
4.20

53.41
15.70
9.15
7.21
15.45
8.73

23.83
14.78

7.29

23.46
7.71
3.06
3.29
5.30

5.40
8.16

27.07
15.50

23.54
22.32

9.36
8.22
8.96

5.55
4.81
4.69
6.03

40,38

9.09

3.96
14.76

18.45

5.01

3.40
2.38
3.82
4.40
6.90
5.16
3.85

5.93
3.07
2.37
5.22
5.66
3.05
6.10

4.41
2.85
3.58
3.49
4.17
4.53
2.25
3.85
3.84
3.61
2.54
2.60
8.30
3.47
3.91
4.09
3.80
2.C2
5.44
2.56
4.55
2.09
3.19
2.11
8.16
3,20

8.1 1
5.40
9.37

7.91

2.06
4.42.
1.92
2.95
3.71
3.66
4.85

2.31
2.73

10.57

10.55

YEAR DAY

66 52

66 53
66 54

66 55

66 56

66 57

66 58

66 59

66 63

66 61
66 62

o6 6J

66 64

66 65

66 66

656 67

66 68

66 69
66 70

66 71
66 73
66 74
66 75

66 76

66 79

66 a0

56 51

66 J2

66 85

06 86

66 37

66 90
66 91
66 92
66 93
66 94
66 95
66 96
66 97

66 93
56 ;9

oo ICO

66 101

66 102

66 103

56 IC4

56 105
66 106

66 IC3

66 109

66 110

66 111

66 II

66 113

66 116

56 117



TABLE 5

Days deleted due to solar flares:
All energy channels

65/364

65/365

66/6

66/7

- 66/8

66/55

- 66/81

66/82

-66/83

66/84

66/92

Days deleted in low energy channel
(20 - 40 MeV)

65/361

66/1

66/2

66/18

66/19

66/20

66/79

66/80

66/85

66/86

66/106
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